Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new X-ray spectroscopic tool for probing the interstellar medium

02.04.2009
Based on the article: “Physical properties of amorphous solid interstellar material from X-ray absorption spectroscopy of Scorpius X-1”, by C.P. de Vries and E. Costantini

Astronomy & Astrophysics is publishing the first clear detection of signatures long sought in the spectra of X-ray astronomical sources, the so-called EXAFS signatures, standing for “Extended X-ray Absorption Fine Structure”.

EXAFS is a powerful tool for studying the structure of grains in the interstellar medium (ISM). It gives a more detailed picture of the composition and structure of amorphous grains in the ISM.

Astronomy & Astrophysics is publishing the first clear detection of signatures long sought in the spectra of X-ray astronomical sources. These signatures, the so-called EXAFS standing for “Extended X-ray Absorption Fine Structure”, were observed with an X-ray spectroscopic technique that is common in materials sciences.

Up to now, EXAFS studies of astronomical sources have been unsuccessful because of the weak X-ray signals received from celestial objects. Using the Reflection Grating Spectrometer (RGS) onboard the XMM-Newton satellite, Dutch astronomers C.P. de Vries and E. Costantini have obtained high-quality X-ray spectra of Scorpius X-1, one of the brightest X-ray sources in the sky, located about 2800 parsecs from the Earth. For the first time, they have found clear evidence of an EXAFS signature coming from the dust seen toward a celestial source.

EXAFS is a powerful tool for studying the structure of grains in the interstellar medium (ISM). It is based on the phenomenon that X-ray photons can eject electrons from atoms inside solid particles, which in turn can be backscattered onto the emitting atom by atoms in their immediate neighborhood. This causes characteristic sinusoidal absorption features in the X-ray spectrum of a distant source that depend on the structure of the absorbing solid material.

Another, perhaps better known, technique of probing ISM dust, infrared spectroscopy, can also be used to study crystalline dust. However, EXAFS has a major advantage over infrared spectroscopy, in that it can probe the solid matter along the line-of-sight at the level of the atomic structure, even for irregular amorphous materials.

Infrared spectroscopy, by comparison, provides information at the mineralogical level. As a result, using EXAFS, astronomers can obtain a very detailed sampling of the composition and atomic structure of the dust along the line-of-sight. EXAFS gives a more detailed picture of the chemical composition and atomic structure of amorphous grains than is possible with infrared spectroscopy.

Dr. Jennifer Martin | EurekAlert!
Further information:
http://www.obspm.fr

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Magnesium magnificent for plasmonic applications

23.05.2018 | Materials Sciences

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>