Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new X-ray spectroscopic tool for probing the interstellar medium

02.04.2009
Based on the article: “Physical properties of amorphous solid interstellar material from X-ray absorption spectroscopy of Scorpius X-1”, by C.P. de Vries and E. Costantini

Astronomy & Astrophysics is publishing the first clear detection of signatures long sought in the spectra of X-ray astronomical sources, the so-called EXAFS signatures, standing for “Extended X-ray Absorption Fine Structure”.

EXAFS is a powerful tool for studying the structure of grains in the interstellar medium (ISM). It gives a more detailed picture of the composition and structure of amorphous grains in the ISM.

Astronomy & Astrophysics is publishing the first clear detection of signatures long sought in the spectra of X-ray astronomical sources. These signatures, the so-called EXAFS standing for “Extended X-ray Absorption Fine Structure”, were observed with an X-ray spectroscopic technique that is common in materials sciences.

Up to now, EXAFS studies of astronomical sources have been unsuccessful because of the weak X-ray signals received from celestial objects. Using the Reflection Grating Spectrometer (RGS) onboard the XMM-Newton satellite, Dutch astronomers C.P. de Vries and E. Costantini have obtained high-quality X-ray spectra of Scorpius X-1, one of the brightest X-ray sources in the sky, located about 2800 parsecs from the Earth. For the first time, they have found clear evidence of an EXAFS signature coming from the dust seen toward a celestial source.

EXAFS is a powerful tool for studying the structure of grains in the interstellar medium (ISM). It is based on the phenomenon that X-ray photons can eject electrons from atoms inside solid particles, which in turn can be backscattered onto the emitting atom by atoms in their immediate neighborhood. This causes characteristic sinusoidal absorption features in the X-ray spectrum of a distant source that depend on the structure of the absorbing solid material.

Another, perhaps better known, technique of probing ISM dust, infrared spectroscopy, can also be used to study crystalline dust. However, EXAFS has a major advantage over infrared spectroscopy, in that it can probe the solid matter along the line-of-sight at the level of the atomic structure, even for irregular amorphous materials.

Infrared spectroscopy, by comparison, provides information at the mineralogical level. As a result, using EXAFS, astronomers can obtain a very detailed sampling of the composition and atomic structure of the dust along the line-of-sight. EXAFS gives a more detailed picture of the chemical composition and atomic structure of amorphous grains than is possible with infrared spectroscopy.

Dr. Jennifer Martin | EurekAlert!
Further information:
http://www.obspm.fr

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>