Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A world-leading UK science project switches on First neutrons created at the ISIS Second Target Station

04.08.2008
The UK’s ISIS Second Target Station Project moved a major step closer to completion today when the first neutrons were created in the ISIS Second Target Station.

After five years of planning and construction, the first neutrons were detected by the Inter instrument at 1308 BST. ISIS, the world-renowned neutron facility at the Rutherford Appleton Laboratory in Oxfordshire, is operated by the Science and Technology Facilities Council.

ISIS, a world leading centre for research in the physical and life sciences, uses neutrons to study materials at the atomic level with a suite of instruments, often described as ‘super-microscopes’. By scattering neutrons off sample materials, scientists can visualise the positions and motions of atoms and make discoveries that have the potential to affect almost every aspect of our lives.

“The first neutrons met all of our technical performance predictions and creating them is a significant milestone in the life of the facility and in the completion of the project,” said Dr Andrew Taylor, Director of ISIS. “The ISIS Second Target Station builds on the success and expertise we have developed over the past 20 years at ISIS and allows us to move further into the areas of soft matter, advanced materials and bioscience. We will be carrying out fundamental research that will shape the technological advances of tomorrow.”

“This is an incredible technical achievement by our staff and demonstrates how everyone can pull together and enable STFC to deliver massive science projects that underpin the long-term future of science and innovation in the UK,“ said Mr Peter Warry, Chairman of the Science and Technology Facilities Council.

“I’m very proud of every single person who has played a part in getting the ISIS Second Target Station project through to this very important milestone.”

The £145 million Second Target Station Project began construction in 2003. It will double the capacity and substantially increase the capability of the facilities already available at ISIS, which serves an international community of over 2,000 scientists.

Neutrons play a vital role in the portfolio of analysis techniques for research on subjects as varied as clean energy and the environment, pharmaceuticals and health care, through to nanotechnology, materials engineering and IT.

“This is tremendous news for the science community, both in the UK and much further afield,” said Professor Andrew Harrison, UK Director at the Institut Laue Langevin, Grenoble, France.

“The ISIS Second Target Station will open research into new types of materials that has not been previously possible at ISIS, and we look forward to a world of new science flowing from the new instrument suite.”

Ian Anderson, Associate Director for Neutron Sciences at Oak Ridge National Laboratory, USA also added his congratulations.

“This is a remarkable achievement by the ISIS team and adds an exciting new dimension to the capabilities of the European neutron scattering toolkit,” he said.

“ISIS is the world’s leading spallation neutron facility and has performed world class outstanding science,” said Professor Masatoshi Arai, Neutron Science Section Leader of the J-PARC accelerator project, Japan. “Adding the second target station is the next great step for ISIS to enhance the ability and extend the reputation of neutron sciences world wide.

“Together with the great scientific environment at ISIS, the skilful design and the mature know-how in neutron technology applied on the second target station will open up unexplored areas for pulsed cold neutron experiments. ISIS can stay as the world-leader even as more powerful spallation neutron sources, such as J-PARC and the US Spallation Neutron Source come online.”

Neutrons are produced at ISIS when bunches of protons travelling at 84% of the speed of light are transferred from the circular ISIS synchrotron accelerator and fired into a tungsten target inside the new target station. This creates billions of neutrons per second that can be used for experiments in seven new instruments.

The full experimental programme at the ISIS Second Target Station begins in autumn this year.

Natalie Bealing | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>