Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A unique glance into the Sun’s atmosphere

Data of the Sunrise observatory provide first detailed images of the chromosphere in ultraviolet light

Three months after the flight of the balloon-borne solar observatory Sunrise, scientists from the Max Planck Institute for Solar System Research (MPS) in Germany now present unique insights into the central layer of the Sun’s atmosphere, the chromosphere.

Focus on the chromosphere: these images show the layer between the surface of the sun and the corona at a wavelength of 279.6 nanometers. Left: In this quiet region a typical pattern can be seen: dark areas surrounded by bright rims. The bright points flashing up here and there can be well discerned. Right: Close to sunspots the images show bright, stretched structures. The colours in these images stand for the intensity of the light: yellow means a high intensity, black a low intensity.


Zooming in on the sun: The right images shows a region of the chromosphere in close proximity to two sunspots. These images were taken on 16 July, 2013.


The Sunrise-data provide the first high-resolution images of this region, lying between the Sun’s visible surface and the corona, in ultraviolet light. More prominently than in earlier images, structures with a size of a few hundred kilometres such as bright points or strongly elongated fibrils occurring in close proximity to sunspots become visible in these wavelengths.

The chromosphere still continues to puzzle scientists. How is it possible that with increasing distance from the Sun’s hot core the temperature in this layer increases on average by 6000 Kelvin? "At first sight, this temperature distribution contradicts basic physical concepts", says Sami K. Solanki, head of the Sunrise mission and director at the MPS. The situation can be compared to a heated room in which it gets warmer with increasing distance to the heater. “Apparently, the chromosphere witnesses huge energy transformations”, he adds. “Processes not yet understood in detail must provide enough energy to heat up the plasma." Data from Sunrise’s first mission in 2009 had revealed acoustic waves to supply a considerable fraction of this energy. In addition, research carried out in recent years has characterized the chromosphere as a very dynamical place where hot and colder regions may lie in close proximity and are constantly in motion.

"In order to solve this riddle it is necessary to take as close a look as possible at the chromosphere – in all accessible wavelengths", Solanki explains. Together with colleagues from the Kiepenheuer-Institut für Sonnenphysik (Freiburg, Germany), the High Altitude Observatory (Boulder, USA), and the Instituto de Astrofísica de Andalucía (Granada, Spain) the MPS researchers were now able to fit another piece into the puzzle: the first high-resolution observations of the chromosphere in ultraviolet light.

The images were made possible by Sunrise, a balloon-borne solar observatory studying the Sun from the stratosphere. Once it reaches its float altitude of more than 37 kilometres, Sunrise has risen above the greatest part of the Earth’s atmosphere. These layers absorb the Sun’s ultraviolet radiation, making it inaccessible to ground-based solar observations. At the beginning of June of this year Sunrise was launched from Kiruna in the north of Sweden and embarked on its second journey. After five days the observatory landed on the remote Boothia Peninsula in northern Canada.

"Of course, in the past space probes have analysed the Sun’s ultraviolet light from space", says Solanki. However, they provide a lower spatial resolution. And Sunrise offers another decisive advantage: the Sunrise Filter Imager, one of the onboard scientific instruments, is able to filter certain ultraviolet parts out of the solar spectrum – for example the radiation with a wavelength of 279.6 nanometres. "Only the magnesium atoms in the chromosphere emit this radiation", says Tino Riethmüller from the MPS, the new study’s leading author. "Even though magnesium constitutes only 0.0024 percent of the Sun’s mass, it gives us direct access to this region", he adds.

The new data paint a complex picture of the chromosphere: where the Sun is quiet and inactive, dark regions with a diameter of around a thousand kilometres can be discerned surrounded by bright rims. This pattern is created by the enormous plasma flows rising up within the Sun, cooling off and sinking down again. Especially eye-catching are bright points that flash up occasionally. In the ultraviolet images they are much richer in contrast than before. Scientists believe these bright points to be signs of single magnetic flux tubes in the photosphere, the building blocks of the solar magnetic field. The Sun’s magnetic field is of particular interest to scientists since it is responsible for all of the star’s activity.

Apart from these quiet regions the researchers also focused on areas in close proximity to sunspots. These huge structures cover the Sun’s surface especially abundantly in times of high solar activity. “In our images we find bright, strongly elongated structures called fibrils”, says Riethmüller.

"These first analyses are extremely promising", Solanki comments the new results. "They show that the ultraviolet radiation from the chromosphere is highly suitable for visualizing detailed structures and processes." The researchers now hope that the next months will provide more new insights – and are looking forward to a close collaboration with colleagues from NASA’s IRIS mission. The space telescope was launched on 28 June, only weeks after the end of the Sunrise mission, and also studies the ultraviolet radiation from chromosphere and corona.


Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email: Krummheuer@­
Prof. Dr. Sami K. Solanki
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-325
Fax: +49 5556 979-190
Email: solanki@­
Dr. Tino Riethmüller
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-375
Email: Riethmueller@­
Original publication
T.L. Riethmüller, S.K. Solanki, J. Hirzberger, S. Danilovic, P. Barthol, T. Berkefeld, A. Gandorfer, L. Gizon, M. Knölker, W. Schmidt, and J.C. Del Toro Iniesta
First high-resolution images of the Sun in the 2796 Å Mg II k line
The Astrophysical Journal Letters

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>