Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A transistor-like amplifier for single photons

28.07.2014

A team of scientists at MPQ achieves a twentyfold amplification of single-photon signals with the help of an ultracold quantum gas.

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years possibilities have been explored how to go one step further and perform all-optical data processing, with optical transistors and optical logic gates.


By exciting one atom into a Rydberg state a single photon (red wave packet) reduces the transmission of a laser pulse through a cloud of ultracold rubidium atoms by 20 light quanta. (Graphic: MPQ, Quantum Dynamics Division)

In particular in the case of quantum information this option would be highly recommendable as the information is often stored in faint light pulses which – at the ultimate limit – contain a single photon only. A team around Professor Gerhard Rempe, Leader of the Quantum Dynamics Division and Director at the Max Planck Institute of Quantum Optics, has now made a kind of optical transistor using a cloud of ultracold rubidium atoms.

With this new device they observed a twentyfold amplification of signal variations at the one-photon level (PRL, 28 July 2014).

The gain of a transistor describes what effect a small change of the input signal has on the output signal. A significant amount of gain is the precondition for distributing the output signal to the input ports of several transistors without signal attenuation, setting the ground for building complex digital switching circuits.

In the case of an optical transistor the input signal is a weak light pulse, called gate pulse, which modifies the transparency of a “medium” for a second pulse, called target pulse. In the experiment described here the medium consists of a cloud of about 150 000 rubidium atoms, kept in an optical dipole trap which is generated by two crossed laser beams. At temperatures of about 0.30 micro-Kelvin (this is just above absolute zero, zero Kelvin correspond to minus 273 degrees Celsius) the cloud can be held in place for several seconds.

The effect of “electromagnetically induced transparency” (EIT), in which a control laser modifies the interaction of a faint light pulse with the medium, makes the atomic cloud transparent for light pulses of certain frequencies.

The atomic cloud is irradiated with two light pulses of the same colour (795 nm), separated in time by two microseconds. The first gate pulse is extremely weak, containing less than one photon on average. In combination with the applied control laser it brings one atom in the cloud into a highly excited Rydberg state.

As in this state one of the outer electrons orbits at a large distance from the nucleus, this single excitation has a long-range effect: by the mere presence of the Rydberg atom the corresponding energy levels of all other atoms in the cloud are slightly shifted. When the second target pulse hits the cloud, its colour does not match the EIT conditions anymore. That is why the target pulse is blocked by the atoms.

A couple of months ago the team of Prof. Rempe has demonstrated that it is possible to switch the transmission properties of a cloud of rubidium atoms with single photons (PRL, Feb. 18th, 2014). However, this effect was achieved under severe limitations concerning duration as well as intensity of the target pulses.

“In the present experiment we have changed a few things, most importantly, we use control lasers with different wavelengths for gate and target pulses.”, Dr. Stephan Dürr, leading scientist at the experiment, points out. “That way we avoid that the target pulse couples to the Rydberg excitation and retrieves the gate pulse, even for long durations of the target pulse.”

Furthermore, different Rydberg states were chosen that give rise to a Förster resonance at which the Rydberg atoms interact with each other even more strongly than they usually would. “The Förster-resonance enhances the effect of the Rydberg blockade which is the true mechanism that prevents the target pulse from traversing the atomic cloud”, Daniel Tiarks, doctoral candidate at the experiment, explains.

“Furthermore, with the principle quantum numbers of the chosen Rydberg states we get a smaller effect of self-blockade of the photons in the target pulse, another obstruction that we had to deal with in our previous experiment. With all these measures we were able to increase the duration of the target pulse by two orders of magnitude, up to 200 microseconds.”

By comparing the intensities of the outgoing target pulses with and without a preceding gate pulse (a single photon), the reduction of the target signal was determined. “Right at the Förster-resonance we observe a reduction of 20 photons.”, Stephan Dürr says.

“This effect should make it possible – at least in principle – to cascade such transistors in order to solve complex computational tasks. In addition, the present experiment demonstrates a new and non-destructive method for the detection of Rydberg excitations. Because of the high amplification we can reveal whether a single Rydberg excitation has been created in the atomic cloud in a single shot.” Olivia Meyer-Streng

Original publication:
Daniel Tiarks, Simon Baur, Katharina Schneider, Stephan Dürr and Gerhard Rempe
Single-Photon Transistor using a Förster-Resonance
Physical Review Letters, 28 July 2014

Contact:

Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -701 /Fax: -311
E-mail: gerhard.rempe@mpq.mpg.de

Dipl. Phys. Daniel Tiarks
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -397
E-mail: daniel.tiarks@mpq.mpg.de

Dr. Stephan Dürr
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -291 /Fax: -311
E-mail: stephan.duerr@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
MPQ Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut

Further reports about: Max-Planck-Institut Phone Quantenoptik Quantum Rydberg microseconds photons reduction transistors

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>