Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A transistor-like amplifier for single photons

28.07.2014

A team of scientists at MPQ achieves a twentyfold amplification of single-photon signals with the help of an ultracold quantum gas.

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years possibilities have been explored how to go one step further and perform all-optical data processing, with optical transistors and optical logic gates.


By exciting one atom into a Rydberg state a single photon (red wave packet) reduces the transmission of a laser pulse through a cloud of ultracold rubidium atoms by 20 light quanta. (Graphic: MPQ, Quantum Dynamics Division)

In particular in the case of quantum information this option would be highly recommendable as the information is often stored in faint light pulses which – at the ultimate limit – contain a single photon only. A team around Professor Gerhard Rempe, Leader of the Quantum Dynamics Division and Director at the Max Planck Institute of Quantum Optics, has now made a kind of optical transistor using a cloud of ultracold rubidium atoms.

With this new device they observed a twentyfold amplification of signal variations at the one-photon level (PRL, 28 July 2014).

The gain of a transistor describes what effect a small change of the input signal has on the output signal. A significant amount of gain is the precondition for distributing the output signal to the input ports of several transistors without signal attenuation, setting the ground for building complex digital switching circuits.

In the case of an optical transistor the input signal is a weak light pulse, called gate pulse, which modifies the transparency of a “medium” for a second pulse, called target pulse. In the experiment described here the medium consists of a cloud of about 150 000 rubidium atoms, kept in an optical dipole trap which is generated by two crossed laser beams. At temperatures of about 0.30 micro-Kelvin (this is just above absolute zero, zero Kelvin correspond to minus 273 degrees Celsius) the cloud can be held in place for several seconds.

The effect of “electromagnetically induced transparency” (EIT), in which a control laser modifies the interaction of a faint light pulse with the medium, makes the atomic cloud transparent for light pulses of certain frequencies.

The atomic cloud is irradiated with two light pulses of the same colour (795 nm), separated in time by two microseconds. The first gate pulse is extremely weak, containing less than one photon on average. In combination with the applied control laser it brings one atom in the cloud into a highly excited Rydberg state.

As in this state one of the outer electrons orbits at a large distance from the nucleus, this single excitation has a long-range effect: by the mere presence of the Rydberg atom the corresponding energy levels of all other atoms in the cloud are slightly shifted. When the second target pulse hits the cloud, its colour does not match the EIT conditions anymore. That is why the target pulse is blocked by the atoms.

A couple of months ago the team of Prof. Rempe has demonstrated that it is possible to switch the transmission properties of a cloud of rubidium atoms with single photons (PRL, Feb. 18th, 2014). However, this effect was achieved under severe limitations concerning duration as well as intensity of the target pulses.

“In the present experiment we have changed a few things, most importantly, we use control lasers with different wavelengths for gate and target pulses.”, Dr. Stephan Dürr, leading scientist at the experiment, points out. “That way we avoid that the target pulse couples to the Rydberg excitation and retrieves the gate pulse, even for long durations of the target pulse.”

Furthermore, different Rydberg states were chosen that give rise to a Förster resonance at which the Rydberg atoms interact with each other even more strongly than they usually would. “The Förster-resonance enhances the effect of the Rydberg blockade which is the true mechanism that prevents the target pulse from traversing the atomic cloud”, Daniel Tiarks, doctoral candidate at the experiment, explains.

“Furthermore, with the principle quantum numbers of the chosen Rydberg states we get a smaller effect of self-blockade of the photons in the target pulse, another obstruction that we had to deal with in our previous experiment. With all these measures we were able to increase the duration of the target pulse by two orders of magnitude, up to 200 microseconds.”

By comparing the intensities of the outgoing target pulses with and without a preceding gate pulse (a single photon), the reduction of the target signal was determined. “Right at the Förster-resonance we observe a reduction of 20 photons.”, Stephan Dürr says.

“This effect should make it possible – at least in principle – to cascade such transistors in order to solve complex computational tasks. In addition, the present experiment demonstrates a new and non-destructive method for the detection of Rydberg excitations. Because of the high amplification we can reveal whether a single Rydberg excitation has been created in the atomic cloud in a single shot.” Olivia Meyer-Streng

Original publication:
Daniel Tiarks, Simon Baur, Katharina Schneider, Stephan Dürr and Gerhard Rempe
Single-Photon Transistor using a Förster-Resonance
Physical Review Letters, 28 July 2014

Contact:

Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -701 /Fax: -311
E-mail: gerhard.rempe@mpq.mpg.de

Dipl. Phys. Daniel Tiarks
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -397
E-mail: daniel.tiarks@mpq.mpg.de

Dr. Stephan Dürr
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -291 /Fax: -311
E-mail: stephan.duerr@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
MPQ Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut

Further reports about: Max-Planck-Institut Phone Quantenoptik Quantum Rydberg microseconds photons reduction transistors

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>