Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A transistor-like amplifier for single photons

28.07.2014

A team of scientists at MPQ achieves a twentyfold amplification of single-photon signals with the help of an ultracold quantum gas.

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years possibilities have been explored how to go one step further and perform all-optical data processing, with optical transistors and optical logic gates.


By exciting one atom into a Rydberg state a single photon (red wave packet) reduces the transmission of a laser pulse through a cloud of ultracold rubidium atoms by 20 light quanta. (Graphic: MPQ, Quantum Dynamics Division)

In particular in the case of quantum information this option would be highly recommendable as the information is often stored in faint light pulses which – at the ultimate limit – contain a single photon only. A team around Professor Gerhard Rempe, Leader of the Quantum Dynamics Division and Director at the Max Planck Institute of Quantum Optics, has now made a kind of optical transistor using a cloud of ultracold rubidium atoms.

With this new device they observed a twentyfold amplification of signal variations at the one-photon level (PRL, 28 July 2014).

The gain of a transistor describes what effect a small change of the input signal has on the output signal. A significant amount of gain is the precondition for distributing the output signal to the input ports of several transistors without signal attenuation, setting the ground for building complex digital switching circuits.

In the case of an optical transistor the input signal is a weak light pulse, called gate pulse, which modifies the transparency of a “medium” for a second pulse, called target pulse. In the experiment described here the medium consists of a cloud of about 150 000 rubidium atoms, kept in an optical dipole trap which is generated by two crossed laser beams. At temperatures of about 0.30 micro-Kelvin (this is just above absolute zero, zero Kelvin correspond to minus 273 degrees Celsius) the cloud can be held in place for several seconds.

The effect of “electromagnetically induced transparency” (EIT), in which a control laser modifies the interaction of a faint light pulse with the medium, makes the atomic cloud transparent for light pulses of certain frequencies.

The atomic cloud is irradiated with two light pulses of the same colour (795 nm), separated in time by two microseconds. The first gate pulse is extremely weak, containing less than one photon on average. In combination with the applied control laser it brings one atom in the cloud into a highly excited Rydberg state.

As in this state one of the outer electrons orbits at a large distance from the nucleus, this single excitation has a long-range effect: by the mere presence of the Rydberg atom the corresponding energy levels of all other atoms in the cloud are slightly shifted. When the second target pulse hits the cloud, its colour does not match the EIT conditions anymore. That is why the target pulse is blocked by the atoms.

A couple of months ago the team of Prof. Rempe has demonstrated that it is possible to switch the transmission properties of a cloud of rubidium atoms with single photons (PRL, Feb. 18th, 2014). However, this effect was achieved under severe limitations concerning duration as well as intensity of the target pulses.

“In the present experiment we have changed a few things, most importantly, we use control lasers with different wavelengths for gate and target pulses.”, Dr. Stephan Dürr, leading scientist at the experiment, points out. “That way we avoid that the target pulse couples to the Rydberg excitation and retrieves the gate pulse, even for long durations of the target pulse.”

Furthermore, different Rydberg states were chosen that give rise to a Förster resonance at which the Rydberg atoms interact with each other even more strongly than they usually would. “The Förster-resonance enhances the effect of the Rydberg blockade which is the true mechanism that prevents the target pulse from traversing the atomic cloud”, Daniel Tiarks, doctoral candidate at the experiment, explains.

“Furthermore, with the principle quantum numbers of the chosen Rydberg states we get a smaller effect of self-blockade of the photons in the target pulse, another obstruction that we had to deal with in our previous experiment. With all these measures we were able to increase the duration of the target pulse by two orders of magnitude, up to 200 microseconds.”

By comparing the intensities of the outgoing target pulses with and without a preceding gate pulse (a single photon), the reduction of the target signal was determined. “Right at the Förster-resonance we observe a reduction of 20 photons.”, Stephan Dürr says.

“This effect should make it possible – at least in principle – to cascade such transistors in order to solve complex computational tasks. In addition, the present experiment demonstrates a new and non-destructive method for the detection of Rydberg excitations. Because of the high amplification we can reveal whether a single Rydberg excitation has been created in the atomic cloud in a single shot.” Olivia Meyer-Streng

Original publication:
Daniel Tiarks, Simon Baur, Katharina Schneider, Stephan Dürr and Gerhard Rempe
Single-Photon Transistor using a Förster-Resonance
Physical Review Letters, 28 July 2014

Contact:

Prof. Dr. Gerhard Rempe
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -701 /Fax: -311
E-mail: gerhard.rempe@mpq.mpg.de

Dipl. Phys. Daniel Tiarks
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -397
E-mail: daniel.tiarks@mpq.mpg.de

Dr. Stephan Dürr
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -291 /Fax: -311
E-mail: stephan.duerr@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
MPQ Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut

Further reports about: Max-Planck-Institut Phone Quantenoptik Quantum Rydberg microseconds photons reduction transistors

More articles from Physics and Astronomy:

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>