Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Traffic Jam of Quantum Particles

05.03.2012
LMU/MPQ-scientists discover surprising transport phenomena in ultracold quantum many body systems.

Transport properties such as thermal or electrical conductivity are of great importance for technical applications of materials. In particular the electrical conductivity stems from the behaviour of the electrons in the solid and is very difficult to predict. This is true especially in the case of strongly correlated electrons, when the position and the dynamics of each single electron is strongly influenced by the behaviour of all other electrons.


Figure 1: A system of fermionic atoms in an optical lattice (top) is brought out of equilibrium and exhibits different dynamics for non-interacting (left) and interacting atoms (right). Grafik: MPQ

Ultracold atoms in optical lattices can be used as model systems that allow the study of analogues processes in a clean and well controlled environment where all relevant parameters can be manipulated by external lasers and magnetic fields. Scientists in the group of Professor Immanuel Bloch (Ludwig-Maximilians-Universität Munich and Max Planck Institute of Quantum Optics, Garching) in collaboration with the theory group of Prof. Achim Rosch (University of Cologne) have now demonstrated that the dynamics of a system of ultracold potassium atoms, trapped in an optical lattice, depend surprisingly strongly on the particle interaction strength (Nature Physics 8, 213-218 (2012), DOI: 10.1038/NPHYS2205). Investigations of this kind give new insights into properties like electrical conductivity, superconductivity or magnetism, and may help to develop materials with ‘tailored’ properties.

So-called optical lattices are generated by superimposing several laser beams. The resulting periodic structure of light resembles the geometry of simple solid state crystals. In fact, atoms trapped in such an artificial lattice, at a temperature of a few nano-Kelvin above absolute zero, experience forces similar to the ones that act on electrons in solid state systems. However, concerning their dynamics, only fermionic atoms behave exactly the same way as electrons, which are fermions as well. These particles have to differ in at least one quantum property if they happen to be at the same place at the same time. Bosonic particles, on the other hand, prefer to gather in exactly the same quantum state.

In the experiment, atoms of the fermionic isotope potassium-40 are cooled down to an extremely low temperature with the help of laser beams and magnetic fields. Then they are loaded into an optical lattice as described above. Initially, the edges of the egg carton-like lattice structure are bent upwards (see figure 1, the colours red and green represent different spin states of the atoms) and the particles sit in the centre with a constant density distribution. Subsequently, the external confining field – responsible for the upwards bending of the lattice – is suddenly eliminated. The egg carton becomes flat and the particle cloud starts to expand. Now the physicists monitor exactly how the density distribution changes during the expansion.
An important feature of this experimental setup is the use of a so-called Feshbach resonance, which makes it possible to change the interaction between the atoms by magnetic fields almost at will. This holds for the sign – attractive or repulsive – as well as for the strength of the interaction. In fact, the interaction can be switched off completely. In this case the atoms don’t ‘see’ each other. They move through the lattice unhindered, and their velocity depends on the lattice depth only. During this free expansion, the symmetry of the cloud changes from the spherical initial density distribution to a square symmetry that is governed by the symmetry of the lattice (figure 1, left).

As soon as there are small interactions present the atoms collide and ‘hinder’ each other, such that the expansion velocity of the cloud decreases. For larger interactions, more and more atoms ‘remain stuck’ in the core of the cloud, which remains spherical. For very strong interactions the dynamics of the high density core change qualitatively: the essentially frozen core dissolves by emitting particles and therefore shrinks in size, similarly to a melting ice cube (figure 1, right).
Surprisingly, only the magnitude, but not the sign of the interaction matters. The observed dynamics of the expansion is identical for repulsive and attractive interactions, as long as they are of the same strength. “This symmetry between attractive and repulsive interaction is an interesting feature of these lattice systems,” Dr. Ulrich Schneider, project leader at this experiment, explains. “In free space, interactions with opposite signs would give rise to opposite effects. Here they can lead to a quantum mechanical entanglement of distant atoms and allow the generation of either ‘normally’ or ‘repulsively’ bound particle pairs.”

Former experiments with fermionic atoms in optical lattices focused on the properties of systems in equilibrium. Here, on the contrary, the scientists observe the dynamics of the atoms in an out-of equilibrium system. These measurements are an important step towards a better understanding of the electronic motion in condensed matter. The physicists hope that this knowledge will lead to an explanation of complex phenomena in solid state physics and material science, and consequently to new tailored materials. [Olivia Meyer-Steng]

Original publication:
Ulrich Schneider, Lucia Hackermüller, Jens Philipp Ronzheimer, Sebastian Will, Simon Braun, Thorsten Best, Immanuel Bloch, Eugene Demler, Stephan Mandt, David Rasch and Achim Rosch

Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms
Nature Physics 8,213-218 (2012), DOI: 10.1038/NPHYS2205 (AOP, 15 January 2012)

Contact:
Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 / 32905 -138
E-mail: immanuel.bloch@mpq.mpg.de
Dr. Ulrich Schneider
Fakultät für Physik
LMU Munich, Schellingstr. 4
80799 München, Germany,
Phone: +49 89 / 2180 -6129
E-mail: ulrich.schneider@lmu.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Press & Public Relations
Phone: +49 89 / 32905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.quantum-munich.de

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>