Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Tiny Flame Shines Light on Supernovae Explosions

Starting from the behavior of small flames in the laboratory, a team of researchers has gained new insights into the titanic forces that drive Type Ia supernova explosions. These stellar explosions are important tools for studying the evolution of the universe, so a better understanding of how they behave would help answer some of the fundamental questions in astronomy.

Type Ia supernovae form when a white dwarf star – the left-over cinder of a star like our Sun – accumulates so much mass from a companion star that it reignites its collapsed stellar furnace and detonates, briefly outshining all other stars in its host galaxy.

Because these stellar explosions have a characteristic brightness, astronomers use them to calculate cosmic distances. (It was by studying Type Ia supernovae that two independent research teams determined that the expansion of the Universe was accelerating, earning them the 2011 Nobel Prize in Physics).

To better understand the complex conditions driving this type of supernova, the researchers performed new 3-D calculations of the turbulence that is thought to push a slow-burning flame past its limits, causing a rapid detonation – the so-called deflagration-to-detonation transition (DDT). How this transition might occur is hotly debated, and these calculations provide insights into what is happening at the moment when the white dwarf star makes this spectacular transition to supernova. “Turbulence properties inferred from these simulations provides insight into the DDT process, if it occurs,” said Aaron Jackson, currently an NRC Research Associate working in the Laboratory for Computational Physics and Fluid Dynamics at the Naval Research Laboratory in Washington, D.C. At the time of this research, Jackson was a graduate student at Stony Brook University on Long Island, New York.

Jackson and his colleagues Dean Townsley from the University of Alabama at Tuscaloosa, and Alan Calder also of Stony Brook, will present their data at the American Physical Society’s (APS) Division of Fluid Dynamics (DFD) meeting in Baltimore, Nov. 20-22, 2011.

While the deflagration-detonation transition mechanism is still not well understood, a prevailing hypothesis in the astrophysics community is that if turbulence is intense enough, DDT will occur. Extreme turbulent intensities inferred in the white dwarf from the researchers’ simulations suggest DDT is likely, but the lack of knowledge about the process allows a large range of outcomes from the explosion. Matching simulations to observed supernovae can identify likely conditions for DDT.

“There are a few options for how to simulate how they [supernovae] might work, each of which has different advantages and disadvantages,” said Townsley. “Our goal is to provide a more realistic simulation of how a given supernova scenario will perform, but that is a long-term goal and involves many different improvements that are still in progress.”

The researchers speculate that this better understanding of the physical underpinnings of the explosion mechanism will give us more confidence in using Type Ia supernovae as standard candles, and may yield more precise distance estimates.

The talk, “Turbulence and Combustion in Type Ia Supernovae,” is at 8 a.m. on Tuesday, Nov. 22, 2011, in Room 308.

Images and animations are here:
The 64th Annual DFD Meeting is hosted by the Johns Hopkins University, the University of Maryland, the University of Delaware and the George Washington University. Howard University and the U.S. Naval Academy are also participating in the organization of the meeting. It will be held at the Baltimore Convention Center, located in downtown Baltimore, Md. All meeting information, including directions to the Convention Center, is at:
Main Meeting Web Site:
Search Abstracts:
Directions and Maps:
Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (, 301-209-3091).
A media-support desk will be located in the exhibit area. Press announcements and other news will be available in the Virtual Press Room (see below).
The APS Division of Fluid Dynamics Virtual Press Room features news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See:

Charles E. Blue | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>