Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Superconductor-Surrogate Earns Its Stripes

19.11.2013
Berkeley Lab Study Reveals Origins of an Exotic Phase of Matter

Understanding superconductivity – whereby certain materials can conduct electricity without any loss of energy – has proved to be one of the most persistent problems in modern physics.


Ultrafast changes in the optical properties of strontium-doped lanthanum nickelate throughout the infrared spectrum expose a rapid dynamics of electronic localization in the nickel-oxide plane, shown at left. This process, illustrated on the right, comprises the first step in the formation of ordered charge patterns or “stripes.”

Scientists have struggled for decades to develop a cohesive theory of superconductivity, largely spurred by the game-changing prospect of creating a superconductor that works at room temperature, but it has proved to be a tremendous tangle of complex physics.

Now scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have teased out another important tangle from this giant ball of string, bringing us a significant step closer to understanding how high- temperature superconductors work their magic. Working with a model compound, the team illuminated the origins of the so-called “stripe phase” in which electrons become concentrated in stripes throughout a material, and which appears to be linked to superconductivity.

“We’re trying to understand nanoscale order and how that determines material properties such as superconductivity,” said Robert Kaindl, a physicist in Berkeley Lab’s Materials Sciences Division. “Using ultrafast optical techniques, we are able to observe how charge stripes start to form on a time scale of hundreds of femtoseconds.” A femtosecond is just one millionth of one billionth of a second.

Electrons in a solid material interact extremely quickly and on very short length scales, so to observe their behavior researchers have built extraordinarily powerful “microscopes” that zoom into fast events using short flashes of laser light. Kaindl and his team brought to bear the power of their ultrafast-optics expertise to understand the stripe phase in strontium-doped lanthanum nickelate (LSNO), a close cousin of high-temperature superconducting materials.

“We chose to work with LSNO because it has essential similarities to the cuprates (an important class of high-temperature superconductors), but its lack of superconductivity lets us focus on understanding just the stripe phase,” said Giacomo Coslovich, a postdoctoral researcher at Berkeley Lab working with Kaindl.

“With science, you have to simplify your problems,” Coslovich continued. “If you try to solve them all at once with their complicated interplay, you will never understand what’s going on.”

Kaindl and Coslovich are corresponding authors on a paper reporting these results in Nature Communications, titled, “Ultrafast charge localization in a stripe-phase nickelate.” Coauthoring the paper are Bernhard Huber, Yi Zhu, Yi-De Chuang, Zahid Hussain, Hans Bechtel, Michael Martin and Robert Schoenlein of Berkeley Lab, along with Wei-Sheng Lee, and Zhi-Xun Shen of SLAC National Accelerator Laboratory, and Takao Sasagawa of Tokyo Institute of Technology.

Stripes are seen in all high-temperature superconductors near the superconducting transition temperature. In this LSNO crystal stripes form only at cryogenic temperatures of about ‑168 degrees Celsius (approximately ‑271 °F), yet at far higher temperatures the team hit upon large changes of the material’s infrared reflectivity. These invisible “color” changes represent an energy threshold for electrical currents, dubbed the energetic “pseudogap”, which grows as the crystal cools – revealing a progressive localization of charges around the nickel atoms.

The scientists then examined the dynamics of LSNO in “pump-probe” experiments, where they melted stripes with an initial ultrafast pulse of laser light and measured the optical changes with a second, delayed pulse. This allowed them to map out the early steps of charge ordering, exposing surprisingly fast localization dynamics preceding the development of organized stripe patterns. A final twist came when they probed the vibrations between nickel and oxygen atoms, uncovering a remarkably strong coupling to the localized electrons with synchronous dynamics.

Beyond the ultrafast measurements, the team also studied X-ray scattering and the infrared reflectance of the material at the neighboring Advanced Light Source, to develop a thorough, cohesive understanding of the stripe phase and why it forms.

Said Kaindl, “We took advantage of our fortunate location in the national lab environment, where we have both these ultrafast techniques and the Advanced Light Source. This collaborative effort made this work possible.”

Having illuminated the origins of the stripe phase in LSNO, the researchers expect their results to provide new impetus to understanding the “pseudogap” in other correlated oxides – especially in high-temperature superconductors where fluctuating stripes occur while their role for the superconductivity mechanism remains unclear.

This research was supported by the U.S. Department of Energy, Office of Science.

Additional Information

For more on the Ultrafast Materials program at Berkeley Lab, visit http://www.lbl.gov/msd

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

The Advanced Light Source is a third-generation synchrotron light source producing light in the x-ray region of the spectrum that is a billion times brighter than the sun. A DOE national user facility, the ALS attracts scientists from around the world and supports its users in doing outstanding science in a safe environment. For more information visit www-als.lbl.gov.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Alison Hatt | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>