Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What happens when a stone impacts on water

28.01.2009
Researchers at the Foundation for Fundamental Research on Matter (FOM), the University of Twente in the Netherlands and the University of Seville in Spain have explained the formation and behaviour of the very fast water jet that is formed when an object impacts on a water surface.

They have observed precisely what happens using a super-fast camera and have made a computer simulation of the process. This shows how the jet is forced upwards, layer by layer, by the surrounding water pressure. The simulation corresponds very closely with observations.

They have also formulated a theoretical model based on this that explains the extremely high speed of the water jet. The researchers are publishing their findings in the renowned journal, Physical Review Letters. These results are not only of academic significance as jets on the impact of an object on a liquid are frequent occurrences in nature and industry.

If one drops a stone into a pond, a very rapid, thin jet of water spouts upwards. This is an everyday phenomenon that occurs frequently in nature and industry. However, the rich and complex dynamics underlying such a system are only revealed if viewed using a high-speed camera. The latter shows how the downward movement of the object is converted into the upward movement of the jet.

A cavity forms behind the object during impact on the water surface. This cavity is subsequently compressed by hydrostatic pressure, which leads to the formation of the jet. In their experiments, FOM PhD candidate Stephan Gekle, José Manuel Gordillo of the University of Seville and Devaraj van der Meer and Detlef Lohse of the University of Twente demonstrate how the wall of the cavity forces the jet upward as it implodes, just like toothpaste being squeezed out of a tube, but many times faster, of course. Incidentally, a jet which is forced downward, deeper into the liquid, is also created at the same time. This second jet is not visible on the surface.

In order to examine the dynamics of the impact in a highly controlled manner, the researchers draw a circular disc through the water surface using a linear motor with a constant speed. Subsequently a high-speed camera is used to take images with a speed of up to 30,000 frames per second.

The formation and constriction of the cavity and the formation of the jet can thus be followed in detail. A computer simulation of the process – which corresponds very closely to the experiment – enables the researchers to study the resulting flow profile. It appears that the jet is forced upward, layer by layer, by the imploding wall. The researchers have formulated a theoretical model to explain the enormous speed of the water jet on the basis of this observation.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>