Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new step towards quantum computers

30.03.2009
RUB Physicists get into a SPIN again
Alignment and Measurement of Electron Spin

The intrinsic rotation of electrons - the "spin" - remains unused by modern electronics. If use as an information carrier were possible, the processing power of electronic components would suddenly increase to a multiple of the present capacity.

In cooperation with colleagues from Dortmund, St. Petersburg and Washington, Bochum physicists have now succeeded in aligning electron spin, bringing it to a controlled "waver" and reading it out. The electron spin can also be realigned as required at any time using optical pulses.

"This is the first, important step toward addressing these "quantum bits", which will form an integral part of data transfer systems and processors in the future", exclaimed Prof. Andreas Wieck. The researchers have published their report in NATURE Physics.

Complex Calculations in Minimum Space

The entirety of present day electronics is based on electrical charges: If a memory cell (bit) has an electrical charge, it represents a logical "1", if no charge is present this is a logical "0". However electrons have more than just a charge - they spin like a top around their own axis, producing a magnetic field, similar to the earth. This spin can be accelerated or decelerated by applying an external magnetic field. The "top" begins to waver and its axis tips to virtually any desired angle. If these manifold possibilities were used as information carriers, it would be possible to store a great deal more information than just "0" and "1" with an electron. Moreover adjacent electrons could be moved into various configurations, because they exert forces on one another in the same manner as two magnets on a bulletin board. This phenomenon would provide a significantly more complex base for data storage and processing. Even a small quantity of these so-call quantum bits (qubits), would allow extremely complex calculations, for which millions of bits are required today.

Confinement of Spins in Indium-Arsenic Islands

Naturally one single electron has only a very small measureable effect. For this reason individual electron measurements can only be performed with great difficulty using highly sensitive instruments. This is why the international research team has specialized in confining nearly one million electrons each in virtually identical indium-arsenic islands ("quantum dots") and totaling their effect. These "ensemble" measurements provide signals which are stronger by a magnitude of six, making them very sturdy and allowing them to be recorded easily.

"Contrary to the preconceptions of many international competitors, all associated electron spins exhibit precisely the same behavior and the microscopic effects can therefore be measured very easily" stated Wieck.

Optical Switching of Quantum Dots

In the study published in "NATURE" the physicists were not only successful in aligning the electron spin; they also managed to rotate it optically using a laser pulse in any desired direction at any time and read this direction out with a further laser pulse. This is the first important step towards "addressing" and influencing qubits. "The interesting factor here is that these electrons are enclosed in solid bodies, so we no longer need complex high vacuum equipment and light occlusion on all sides to keep them permanently in a module as in quantum optics " stressed Prof. Wieck. In Bochum the extremely high vacuum is required only once during production of the quantum dot; after that the semiconductor system is sealed against air ingress, has a long service life and is just as reliable as all transistors and memory cells already in use today.

Title picture

A. Greilich, Sophia E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke & M. Bayer: Ultrafast optical rotations of electron spins in quantum dots. in: NATURE Physics, 22.3.2009, DOI 10.1038/NPHYS1226

Further information

Prof. Dr. Andreas Wieck, Chair for Applied Solid State Physics at the Ruhr University in Bochum, Tel.: 0234/32-28786, E-Mail: andreas.wieck@rub.de

Editor: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>