Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Further Step in the Design of the LAGUNA Large Neutrino Observatory Is Launched

20.10.2011
The kick-off meeting for the second phase of the LAGUNA’s design study starts today at CERN.

The principal goal of LAGUNA (Large Apparatus for Grand Unification and Neutrino Astrophysics) is to assess the feasibility of a new pan-European research infrastructure able to host the next generation, very large volume, deep underground neutrino observatory.

The scientific goals of such an observatory combine exciting neutrino astrophysics with research addressing several fundamental questions such as proton decay and the existence of a new source of matter-antimatter asymmetry in Nature, in order to explain why our Universe contains only matter and not equal amounts of matter and antimatter.

Underground neutrino detectors based on large, surface-instrumented, liquid volumes have achieved fundamental results in particle and astroparticle physics, and were able to simultaneously collect events from several different cosmic sources. Neutrinos interact only very weakly with matter so they can travel very large distances in space and traverse dense zones of the Universe, thus providing unique information on their sources and an extremely rich physics programme.

In order to move forward, a next-generation very large multipurpose underground neutrino observatory of a total mass of around 100 000 to 500 000 tons is needed. This new facility will provide new and unique scientific opportunities, very likely leading to fundamental discoveries and attracting interest from scientists worldwide.

This further step newly includes the study of long baseline neutrino beams from CERN accelerators. When coupled to such a neutrino beam, the neutrino observatory will measure with unprecedented sensitivity neutrino flavor oscillation phenomena and possibly unveil the existence of CP violation in the leptonic sector.

In addition, the observatory will detect neutrinos as messengers from further distant astrophysical objects as well as from the early universe. In particular, it will sense a large number of neutrinos emitted by exploding galactic and extragalactic type-II supernovae. The neutrino observatory will also allow precision studies of other astrophysical or terrestrial sources of neutrinos, such as solar and atmospheric ones, and will search for new sources of astrophysical neutrinos like, for example, the diffuse neutrino background from relic supernovae, or those produced in hypothetic dark matter particle annihilation in the centre of the Sun or the Earth. Furthermore, it will allow unprecedented search for the proton lifetime with sensitivities up to 1035 years, pursuing the only possible path to directly test physics at the grand unified theory scale.

Called LAGUNA-LBNO, this design study is funded by the European Commission under the Seventh Framework Programme and will last three years. LAGUNA is one of the Magnificent Seven, the large infrastructures included in the European Roadmap for astroparticle physics developed by the ASPERA* European network of funding agencies. There is currently an intense competition worldwide to host the next generation large neutrino observatory. Europe is currently leading deep underground science with a strong expertise in this area, thanks its four long running deep underground laboratories. LAGUNA will provide an important asset for Europeans to keep this leadership in deep underground physics.

LAGUNA-LBNO brings together 300 scientists, CERN and 38 other institutions from Finland, France, Germany, Greece, Japan, Italy, Poland, Romania, Russia, Spain, United-Kingdom and Switzerland. It is coordinated by André Rubbia from ETH Zurich.

Link to the laguna web site: http://www.laguna-science.eu/

Arnaud Marsollier | CERN Press Office
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>