Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step closer to an ultra precise atomic clock

20.04.2009
A clock that is so precise that it loses only a second every 300 million years – this is the result of new research in ultra cold atoms.

The international collaboration is comprised of researchers from the University of Colorado, USA and the Niels Bohr Institute at the University of Copenhagen and the results have just been published in the prestigious scientific journal, Science.

An atomic clock consists of gas atoms captured in a magnetic field where they are held stationary with precise laser light and are cooled down to near absolute zero, minus 273 degrees Celsius. In this state the researchers can use the quantum properties of the atoms and get them to function as a clock movement with a pendulum.

"An atom consists of a nucleus and some electrons that spin in clearly defined orbits around the nucleus. By using the focused laser light one can make the electron swing back and forth in a clearly defined way between these orbits, and it is that which forms the pendulum in the atomic clock", explains nuclear physicist at the Niels Bohr Institute at the University of Copenhagen, Jan W. Thomsen, who has worked with the new experiments together with researchers at the University of Colorado in Boulder, USA.

Disobedient atoms
Atomic clocks are not really anything new and are already used to make the most precise calculations in physics. But there was something the researchers did not understand, that they ran into a barrier in their endeavours to make the atomic clock even more precise. They could not get the precision better than the loss of one second every 150 million years.

"The problem was that the atoms did not behave as they should according to the theory of quantum physics", tells Jan W. Thomsen and explains, that atoms have two fundamental states – they either rotate a complete revolution around themselves and are then called bosons or they rotate half-integers (½ or 1½) around themselves and are then called fermions. These two types behave completely differently. The bosons clump tightly together, while the fermions are repelled by each other and it is impossible to get them near to each other.

Journey into the quantum world

For atomic clocks one uses fermions because they do not interact – according to the theory of physics of quantum mechanics. Yet they did, as it turned out. And what was the reason? The researchers wanted to find out what was really happening and they started a colossal series of time consuming experiments that have given a whole new insight into how cold atoms behave.

"It was an fascinating journey into the world of quantum mechanics. We found out that not all fermions were the same. At the very low temperatures the fermions begin to 'see' each other and interact and then the atomic clock begins to go awry", explains Jan W. Thomsen. The experiments showed that the fermion's quantum properties were being affected by the exposure to light itself and this lead to the loss of precision in the atomic clock. By tuning the light frequency in a certain way one could control the fermions and avoid the loss of precision.

Great potential

The result is that an atomic clock is now three times more precise than before and that the clock now loses only one second per 300 million years as opposed to one second per 150 million years. Even though it is only small fraction of a second, it has great potential in the application in areas having to do with the determination of great distances, for example, measuring the distance to distant galaxies in space. If one looks back towards the Earth one could measure the tiny movements in the continental drift and that can perhaps give geophysicists a new tool to work with to predict earthquakes.

The question is whether they are now satisfied with the atomic clock's precision? "Not completely", answers Jan W. Thomsen, "we dream of getting an atomic clock with perfect precision". So the research in the world of quantum mechanics continues towards a new goal.

Contact:

Jan W. Thomsen, PhD. nuclear physicist, Niels Bohr Institute, University of Copenhagen, +45 3532-0463, +45 3532-0462, jwt@fys.ku.dk

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

More articles from Physics and Astronomy:

nachricht Individualized fiber components for the world market
23.06.2017 | Laser Zentrum Hannover e.V.

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>