Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step closer to an ultra precise atomic clock

20.04.2009
A clock that is so precise that it loses only a second every 300 million years – this is the result of new research in ultra cold atoms.

The international collaboration is comprised of researchers from the University of Colorado, USA and the Niels Bohr Institute at the University of Copenhagen and the results have just been published in the prestigious scientific journal, Science.

An atomic clock consists of gas atoms captured in a magnetic field where they are held stationary with precise laser light and are cooled down to near absolute zero, minus 273 degrees Celsius. In this state the researchers can use the quantum properties of the atoms and get them to function as a clock movement with a pendulum.

"An atom consists of a nucleus and some electrons that spin in clearly defined orbits around the nucleus. By using the focused laser light one can make the electron swing back and forth in a clearly defined way between these orbits, and it is that which forms the pendulum in the atomic clock", explains nuclear physicist at the Niels Bohr Institute at the University of Copenhagen, Jan W. Thomsen, who has worked with the new experiments together with researchers at the University of Colorado in Boulder, USA.

Disobedient atoms
Atomic clocks are not really anything new and are already used to make the most precise calculations in physics. But there was something the researchers did not understand, that they ran into a barrier in their endeavours to make the atomic clock even more precise. They could not get the precision better than the loss of one second every 150 million years.

"The problem was that the atoms did not behave as they should according to the theory of quantum physics", tells Jan W. Thomsen and explains, that atoms have two fundamental states – they either rotate a complete revolution around themselves and are then called bosons or they rotate half-integers (½ or 1½) around themselves and are then called fermions. These two types behave completely differently. The bosons clump tightly together, while the fermions are repelled by each other and it is impossible to get them near to each other.

Journey into the quantum world

For atomic clocks one uses fermions because they do not interact – according to the theory of physics of quantum mechanics. Yet they did, as it turned out. And what was the reason? The researchers wanted to find out what was really happening and they started a colossal series of time consuming experiments that have given a whole new insight into how cold atoms behave.

"It was an fascinating journey into the world of quantum mechanics. We found out that not all fermions were the same. At the very low temperatures the fermions begin to 'see' each other and interact and then the atomic clock begins to go awry", explains Jan W. Thomsen. The experiments showed that the fermion's quantum properties were being affected by the exposure to light itself and this lead to the loss of precision in the atomic clock. By tuning the light frequency in a certain way one could control the fermions and avoid the loss of precision.

Great potential

The result is that an atomic clock is now three times more precise than before and that the clock now loses only one second per 300 million years as opposed to one second per 150 million years. Even though it is only small fraction of a second, it has great potential in the application in areas having to do with the determination of great distances, for example, measuring the distance to distant galaxies in space. If one looks back towards the Earth one could measure the tiny movements in the continental drift and that can perhaps give geophysicists a new tool to work with to predict earthquakes.

The question is whether they are now satisfied with the atomic clock's precision? "Not completely", answers Jan W. Thomsen, "we dream of getting an atomic clock with perfect precision". So the research in the world of quantum mechanics continues towards a new goal.

Contact:

Jan W. Thomsen, PhD. nuclear physicist, Niels Bohr Institute, University of Copenhagen, +45 3532-0463, +45 3532-0462, jwt@fys.ku.dk

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>