Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting a step ahead of pathogens

28.07.2010
Genetic architecture and the evolution of RNA viruses

In biology and genetics, the concept of epistasis is what gives rise to the whole being more (or less) than the sum of its parts. The quantitative effect of a given mutation upon the traits of an organism has the potential to depend strongly upon the gene versions present in other parts of the genome, or even other mutations co-occurring in that gene.

These genetic interactions, termed epistasis, can impact all aspects of organisms and play a pivotal role in the manifestation of sex, ploidy, modularity, robustness, reproductive isolation and the origin of species, the rate of adaptation, and the emergence of genetic mutations within individuals and populations. A recent article in the journal Chaos, published by the American Institute of Physics, examines the possibility of using epistasis to predict the outcome of the evolutionary processes, especially when the evolving units are pathogens such as viruses.

The article looks at three topics: empirical evidence from the RNA virus world, mathematical tools, and the application of these tools to particular problems. Santiago Elena and colleagues at Instituto de Biología Molecular y Celular de Plantas have surveyed past work in this field and concluded that even though RNA viruses have small genomes composed of few genes that encode a limited number of proteins, epistasis is abundant and conditions their evolution. The next steps may range from characterizing the statistical distributions of epistasis across hosts, which has tremendous relevance for the emergence of new viruses, to drawing the most likely evolutionary paths a virus may follow in response to treatments with antiviral drugs.

While this research is still in the early stages, Elena sees great potential.

"By increasing our ability to predict the most likely evolutionary paths a virus may follow in response to clinical treatments, we could get a step ahead of them and, perhaps, create new and more durable antiviral therapies," he says.

The article, "Simple genomes, complex interactions: Epistasis in RNA virus" by Santiago F. Elena,2, Ricard V. Solé, and Josep Sardanyés was published online in the journal Chaos on June 30, 2010. See: http://link.aip.org/link/CHAOEH/v20/i2/p026106/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT CHAOS

Chaos is an interdisciplinary journal of non-linear science. The journal is published quarterly by the American Institute of Physics and is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. Special focus issues are published periodically each year and cover topics as diverse as the complex behavior of the human heart to chaotic fluid flow problems. See: http://chaos.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

Further reports about: AIP Getting Physic RNA Santiago evolutionary process genetic mutation

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>