Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting a step ahead of pathogens

Genetic architecture and the evolution of RNA viruses

In biology and genetics, the concept of epistasis is what gives rise to the whole being more (or less) than the sum of its parts. The quantitative effect of a given mutation upon the traits of an organism has the potential to depend strongly upon the gene versions present in other parts of the genome, or even other mutations co-occurring in that gene.

These genetic interactions, termed epistasis, can impact all aspects of organisms and play a pivotal role in the manifestation of sex, ploidy, modularity, robustness, reproductive isolation and the origin of species, the rate of adaptation, and the emergence of genetic mutations within individuals and populations. A recent article in the journal Chaos, published by the American Institute of Physics, examines the possibility of using epistasis to predict the outcome of the evolutionary processes, especially when the evolving units are pathogens such as viruses.

The article looks at three topics: empirical evidence from the RNA virus world, mathematical tools, and the application of these tools to particular problems. Santiago Elena and colleagues at Instituto de Biología Molecular y Celular de Plantas have surveyed past work in this field and concluded that even though RNA viruses have small genomes composed of few genes that encode a limited number of proteins, epistasis is abundant and conditions their evolution. The next steps may range from characterizing the statistical distributions of epistasis across hosts, which has tremendous relevance for the emergence of new viruses, to drawing the most likely evolutionary paths a virus may follow in response to treatments with antiviral drugs.

While this research is still in the early stages, Elena sees great potential.

"By increasing our ability to predict the most likely evolutionary paths a virus may follow in response to clinical treatments, we could get a step ahead of them and, perhaps, create new and more durable antiviral therapies," he says.

The article, "Simple genomes, complex interactions: Epistasis in RNA virus" by Santiago F. Elena,2, Ricard V. Solé, and Josep Sardanyés was published online in the journal Chaos on June 30, 2010. See:

Journalists may request a free PDF of this article by contacting


Chaos is an interdisciplinary journal of non-linear science. The journal is published quarterly by the American Institute of Physics and is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. Special focus issues are published periodically each year and cover topics as diverse as the complex behavior of the human heart to chaotic fluid flow problems. See:


The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:

Further reports about: AIP Getting Physic RNA Santiago evolutionary process genetic mutation

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>