Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In a star's final days, astronomers hunt 'signal of impending doom'

01.12.2011
An otherwise nondescript binary star system in the Whirlpool Galaxy has brought astronomers tantalizingly close to their goal of observing a star just before it goes supernova.

The study, submitted in a paper to the Astrophysical Journal, provides the latest result from an Ohio State University galaxy survey underway with the Large Binocular Telescope, located in Arizona.


This Large Binocular Telescope image below of the Whirlpool Galaxy, otherwise known as M51, is part of a new galaxy survey by Ohio State University, where astronomers are searching for signs that stars are about to go supernova. The insets show one particular binary star system before (left) and after (right) one of its stars went supernova.
Credit: Image by Dorota Szczygiel, courtesy of Ohio State University.

In the first survey of its kind, the researchers have been scanning 25 nearby galaxies for stars that brighten and dim in unusual ways, in order to catch a few that are about to meet their end. In the three years since the study began, this particular unnamed binary system in the Whirlpool Galaxy was the first among the stars they've cataloged to produce a supernova.

The astronomers were trying to find out if there are patterns of brightening or dimming that herald the end of a star's life. Instead, they saw one star in this binary system dim noticeably before the other one exploded in a supernova during the summer of 2011.

Though they're still sorting through the data, it's likely that they didn't get any direct observations of the star that exploded – only its much brighter partner.

Yet, principal investigator Christopher Kochanek, professor of astronomy at Ohio State and the Ohio Eminent Scholar in Observational Cosmology, does not regard this first result as a disappointment. Rather, it's a proof of concept.

"Our underlying goal is to look for any kind of signature behavior that will enable us to identify stars before they explode," he said. "It's a speculative goal at this point, but at least now we know that it's possible."

"Maybe stars give off a clear signal of impending doom, maybe they don't," said study co-author Krzystof Stanek, professor of astronomy at Ohio State, "But we'll learn something new about dying stars no matter the outcome."

Postdoctoral researcher Dorota Szczygiel, who led the study of this supernova, explained why the galaxy survey is important.

"The odds are extremely low that we would just happen to be observing a star for several years before it went supernova. We would have to be extremely lucky," she said.

"With this galaxy survey, we're making our own luck. We're studying all the variable stars in 25 galaxies, so that when one of them happens go supernova, we've already compiled data on it." The supernova, labeled 2011dh, was first detected on May 31 and is still visible in telescopes. It originated from a binary star system in the Whirlpool Galaxy – also known as M51, one of the galaxies that the Ohio State astronomers have been observing for three years.

The system is believed to have contained one very bright blue star and one even brighter red star. From what the astronomers can tell, it's likely that the red star is the one that dimmed over the three years, before the blue star initiated the supernova.

When the Ohio State researchers reviewed the Large Binocular Telescope data as well as Hubble Space Telescope images of M51, they saw that the red star had dimmed by about 10 percent over three years, at a pace of three percent per year.

Szczygiel believes that the red star likely survived its partner's supernova.

"After the light from the explosion fades away, we should be able to see the companion that did not explode," she said.

As astronomers gather data from more supernovae – Kochanek speculates that as many as one per year could emerge from their data set – they could assemble a kind of litmus test to predict whether a particular star is near death. Whether it's going to spawn a supernova or shrink into a black hole, there may be particular signals visible on the surface, and this study has shown that those signals are detectable.

The team won't be watching our sun for any changes, however. At less than 10 percent of the mass of the star in supernova 2011dh, our star will most likely meet a very boring end.

"There'll be no supernova for our sun – it'll just fizzle out," Kochanek said. "But that's okay – you don't want to live around an exciting star."

This research was supported by the National Science Foundation.

The Large Binocular Telescope is an international collaboration among institutions in the United Sates, Italy, and Germany. The LBT Corporation partners are: the University of Arizona on behalf of the Arizona University System; the Instituto nazionale di Astrofisica, Italy; the LBT Beteiligungsesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

Contact: Christopher Kochanek, 614-292-5954; Kochanek.1@osu.edu.
Dorota Szczygiel, 614-688-7426; Szczygiel.3@osu.edu
Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

Christopher Kochanek | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>