Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Simple View Of Gravity Does Not Fully Explain The Distribution Of Stars In Crowded Clusters

21.02.2013
Gravity remains the dominant force on large astronomical scales, but when it comes to stars in young star clusters the dynamics in these crowded environments cannot be simply explained by the pull of gravity.

After analyzing Hubble Space Telescope images of star cluster NGC 1818 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, researchers at the Kavli Institute for Astronomy and Astrophysics (KIAA) at Peking University in Beijing found more binary star systems toward the periphery of cluster than in the center – the opposite of what they expected. The surprising distribution of binaries is thought to result from complex interactions among stars within young clusters.

The team’s finding will be published in the March 1 print issue of The Astrophysical Journal and is now online.

In the dynamic environment of a star cluster, high-mass stars are thought to gravitate toward the center of a cluster when they give a ‘kick’ to lower-mass stars and lose energy, explained KIAA Prof. Richard de Grijs, who led the study. This leads them to sink to the cluster center, while the lower-mass stars gain energy and might move to orbits at greater distances from the cluster core. Astronomers call this process “mass segregation.”

However, when the Kavli researchers looked closely at binary star systems within NGC 1818, they found a much more complex picture.

Most stars in clusters actually form in pairs, called “binary stars,” which initially are located so close to one another that they interact, resulting in the destruction of some binary systems. Other binaries, meanwhile, swap partners. Astronomers had expected that the same process that leads a cluster’s most massive stars to gravitate toward the center would also apply to binaries. This is because together, the stars that make up binaries have more mass on average than a single star.

When the astronomers discovered that there were more binaries the farther from the core they observed, they were initially baffled by this unexpected result. They concluded that so-called “soft” binary systems, in which the two stars orbit each other at rather large distances, are destroyed due to close encounters with other stars near the cluster’s center. Meanwhile, “hard” binaries, in which the two stars orbit one another at much shorter distances, survive close encounters with other stars much better, all throughout a cluster. This is why more binaries were seen farther out than close in.

Mapping the radial distribution of binary systems in dense star clusters had never been done before for clusters as young as NGC 1818, which is thought to be 15-30 million years old. This is difficult to do in any case, because there are no young clusters nearby in our own Milky Way galaxy. The new result provides new insights into theoretically predicted processes that govern the evolution of star clusters.

“The extremely dynamic interactions among stars in clusters complicates our understanding of gravity,” team member Chengyuan Li said. “One needs to investigate the entire physical environment to fully understand what’s happening in that environment. Things are usually more complex than they appear.”

James Cohen | EurekAlert!
Further information:
http://www.kavlifoundation.org

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>