Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A sharp eye for molecular fingerprints


MPQ-scientists record broad absorption spectra on a microsecond scale with two laser frequency combs.

A team of scientists around Dr. Nathalie Picqué and Prof. Theodor W. Hänsch at the Laser Spectroscopy Division of the Max Planck Institute of Quantum Optics (Garching), in a collaboration with the Ludwig-Maximilians-Universität Munich and the Institut des Sciences Moléculaires d’Orsay (France) now reports on a new method of real-time identification and quantification of molecular species (Nature Communications 5, 3375 – Feb. 27, 2014).

Portion of a dual-comb real-time absorption spectrum of acetylene in the near-infrared region. While the spectrum without the adaptive sampling (blind sampling) is strongly distorted, the adaptive spectrum accurately reveals the molecular profiles. (Graphic: MPQ, Laser Spectroscopy Division)

How to retrieve greenhouse gas concentrations in the earth atmosphere or to test fundamental laws of quantum mechanics? By measuring the spectrum of light interacting with matter, i.e. measuring the intensity of light transmitted through a medium as a function of its color. Each molecule leaves its fingerprint: characteristic absorptions, which make it possible to unambiguously identify it and measure its concentration. Recording an absorption spectrum that spans a broad spectral bandwidth in real-time (<1 millisecond) is an appealing quest to scientists working in this field: hundreds of molecules may then be simultaneously tracked. Research in chemical kinetics or homeland security gas detection would e.g. benefit from such capabilities.

In recent years, a new spectroscopic technique, called dual-comb spectroscopy, has demonstrated a very exciting potential for ultra-rapid recording of complex molecular spectra. Compared to the state-of-the-art instrumentation, Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds. Dual-comb spectroscopy without moving parts harnesses two laser frequency combs, coherent sources that emit a regular train of ultrashort pulses, to perform interferometric measurements.

However, the technique of dual-comb spectroscopy has not realized its full potential yet, mostly because it is difficult to synchronize the two comb lasers within the required precision. The MPQ scientists have now developed a new approach to adaptive sampling, so that they are able to use unstabilized free-running femtosecond lasers without sacrificing performance. By generating proper clock signals, they compensate for laser short-term instabilities by electronic signal processing only.

This demonstrated possibility of using femtosecond lasers without any sophisticated stabilization scheme considerably eases the implementation of a dual-comb spectrometer. “It should facilitate applications to real-time sensing,” comments Takuro Ideguchi, who just completed his doctoral dissertation, partly based on this experiment.

“Dual-comb spectroscopy holds much promise for new approaches to molecular physics and our scheme of adaptive sampling is a key to their efficient implementation. Enhanced sensitivity for weak concentrations is within reach with the development of mid-infrared frequency combs, while nonlinear dual-comb spectroscopy provides intriguing prospects for applications ranging from bio-imaging to precision spectroscopy“, Takuro Ideguchi adds. [NP]

 Original publication:

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué and T.W. Hänsch
Adaptive real-time dual-comb spectroscopy
Nature Communications 5, Article number: 3375 (8 pages), Published 27 February 2014. DOI: 10.1038/ncomms4375


Prof. Dr. Theodor W. Hänsch
Professor of Experimental Physics,
Ludwig-Maximilians-Universität, Munich
Director at Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -712

Dr. Nathalie Picqué
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -290

Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>