Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel scheme to enhance local electric fields around metal nanostructures

22.10.2012
Enhanced local electric fields are predominant in nonlinear optical properties, particularly in surface-enhanced Raman scattering (SERS), which is a sensitive technique used for the detection of trace amounts of chemicals.

Analysis of the electric fields around nanostructures indicates that they can provide a basic foundation to obtain greater SERS intensity. Professor ZHANG Zhongyue and his group from the College of Physics and Information Technology at Shaanxi Normal University have proposed a novel scheme to enhance the local electric fields around nanostructures.


This is a schematic presentation for illustration of the superposition of the incident waves in the nanorod-groove system.

Credit: ©Science China Press

The scheme is based on manipulation of the incident wave to allow the superposition of the electric fields of multiple beams of light to work as the excitation source for the electrons in the nanostructures, and larger electric fields are thus excited around the nanostructures. Their work, entitled "Enhancing the electric fields around the nanorods by using metal grooves", was published in SCIENCE CHINA Physics, Mechanics & Astronomy 2012, vol. 55 (10).

SERS is one of the most promising applications of the enhanced optical fields generated by the excitation of local surface plasmons in metal nanostructures. The SERS spectrum reveals the vibration modes of molecules, thus conveying specific information with fingerprint-level accuracy. Also, the sensitivity of SERS is one of the highest among the currently available analytical techniques, potentially leading to single molecule detection. Although the SERS signal from a particular molecule originates from both chemical and electromagnetic contributions, the dominant factor in SERS is a result of the local electromagnetic field enhancement caused by the resonant excitation of localized surface plasmons in metal nanostructures.

Because the surface plasmon resonance depends strongly on the shape of the nanostructures, nanostructures with different topological shapes were prepared to enhance the local electric fields. It was found that nanostructure pairs and nanogalaxies could also achieve stronger electric fields because of the electric field couplings or cascade electric field enhancements in the nanosystems.

Unlike previous methods of building the SERS substrates, ZHANG Zhongyue and his group presented a novel scheme to enhance the electric fields around the nanostructures. By manipulating the incident wave, the superposition of the electric fields of multiple beams of light works as the excitation source. When the phase differences between the multiple beams of light are designed appropriately, the excitation fields for electron oscillations in the nanostructures are much greater than those at normal incidence. The electric fields around these nanostructures are also larger than those at normal incidence. The starting point of this scheme is the enhancement of the excitation field for the electron oscillations in the nanostructures, which does not conflict with previous designs that varied the topological shapes of the nanostructures or combined nanostructures to generate larger electric fields.

Following the previously discussed schemes, ZHANG Zhongyue and his group presented the silver nanorod-groove system for SERS substrates. The grooves are used to manipulate the incident waves. The superposition of the electric fields of multiple beams of light works to excite the electron oscillations in the nanorods. As a result, the electric fields around the nanorods in the nanorod-groove system are much greater than those around individual nanorods and those in the nanorod-film system.

For the nanorod-groove system, even with fabrication defects related to the oblique angle of the groove and the location of the nanorod, numerical calculations also show that larger electric fields can be excited around the nanorods. Although the separation distances between the nanorods affect the electric field distributions, the electric fields are always larger than those around individual nanorods and those around the nanorods in the nanorod-film system. Therefore, the nanorod-groove system provides a good structure to further enhance the local electric fields around the nanorods.

See the article: Zhao Y. N., Qin Y., Cao W., et al. Enhancing the electric fields around the nanorods by using metal grooves. SCI CHINA Phys. Mech. Astron., 2012, 55 (10): 1763-1768

ZHANG Zhongyue | EurekAlert!
Further information:
http://www.snnu.edu.cn

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>