Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel scheme to enhance local electric fields around metal nanostructures

22.10.2012
Enhanced local electric fields are predominant in nonlinear optical properties, particularly in surface-enhanced Raman scattering (SERS), which is a sensitive technique used for the detection of trace amounts of chemicals.

Analysis of the electric fields around nanostructures indicates that they can provide a basic foundation to obtain greater SERS intensity. Professor ZHANG Zhongyue and his group from the College of Physics and Information Technology at Shaanxi Normal University have proposed a novel scheme to enhance the local electric fields around nanostructures.


This is a schematic presentation for illustration of the superposition of the incident waves in the nanorod-groove system.

Credit: ©Science China Press

The scheme is based on manipulation of the incident wave to allow the superposition of the electric fields of multiple beams of light to work as the excitation source for the electrons in the nanostructures, and larger electric fields are thus excited around the nanostructures. Their work, entitled "Enhancing the electric fields around the nanorods by using metal grooves", was published in SCIENCE CHINA Physics, Mechanics & Astronomy 2012, vol. 55 (10).

SERS is one of the most promising applications of the enhanced optical fields generated by the excitation of local surface plasmons in metal nanostructures. The SERS spectrum reveals the vibration modes of molecules, thus conveying specific information with fingerprint-level accuracy. Also, the sensitivity of SERS is one of the highest among the currently available analytical techniques, potentially leading to single molecule detection. Although the SERS signal from a particular molecule originates from both chemical and electromagnetic contributions, the dominant factor in SERS is a result of the local electromagnetic field enhancement caused by the resonant excitation of localized surface plasmons in metal nanostructures.

Because the surface plasmon resonance depends strongly on the shape of the nanostructures, nanostructures with different topological shapes were prepared to enhance the local electric fields. It was found that nanostructure pairs and nanogalaxies could also achieve stronger electric fields because of the electric field couplings or cascade electric field enhancements in the nanosystems.

Unlike previous methods of building the SERS substrates, ZHANG Zhongyue and his group presented a novel scheme to enhance the electric fields around the nanostructures. By manipulating the incident wave, the superposition of the electric fields of multiple beams of light works as the excitation source. When the phase differences between the multiple beams of light are designed appropriately, the excitation fields for electron oscillations in the nanostructures are much greater than those at normal incidence. The electric fields around these nanostructures are also larger than those at normal incidence. The starting point of this scheme is the enhancement of the excitation field for the electron oscillations in the nanostructures, which does not conflict with previous designs that varied the topological shapes of the nanostructures or combined nanostructures to generate larger electric fields.

Following the previously discussed schemes, ZHANG Zhongyue and his group presented the silver nanorod-groove system for SERS substrates. The grooves are used to manipulate the incident waves. The superposition of the electric fields of multiple beams of light works to excite the electron oscillations in the nanorods. As a result, the electric fields around the nanorods in the nanorod-groove system are much greater than those around individual nanorods and those in the nanorod-film system.

For the nanorod-groove system, even with fabrication defects related to the oblique angle of the groove and the location of the nanorod, numerical calculations also show that larger electric fields can be excited around the nanorods. Although the separation distances between the nanorods affect the electric field distributions, the electric fields are always larger than those around individual nanorods and those around the nanorods in the nanorod-film system. Therefore, the nanorod-groove system provides a good structure to further enhance the local electric fields around the nanorods.

See the article: Zhao Y. N., Qin Y., Cao W., et al. Enhancing the electric fields around the nanorods by using metal grooves. SCI CHINA Phys. Mech. Astron., 2012, 55 (10): 1763-1768

ZHANG Zhongyue | EurekAlert!
Further information:
http://www.snnu.edu.cn

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>