Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel scheme to enhance local electric fields around metal nanostructures

22.10.2012
Enhanced local electric fields are predominant in nonlinear optical properties, particularly in surface-enhanced Raman scattering (SERS), which is a sensitive technique used for the detection of trace amounts of chemicals.

Analysis of the electric fields around nanostructures indicates that they can provide a basic foundation to obtain greater SERS intensity. Professor ZHANG Zhongyue and his group from the College of Physics and Information Technology at Shaanxi Normal University have proposed a novel scheme to enhance the local electric fields around nanostructures.


This is a schematic presentation for illustration of the superposition of the incident waves in the nanorod-groove system.

Credit: ©Science China Press

The scheme is based on manipulation of the incident wave to allow the superposition of the electric fields of multiple beams of light to work as the excitation source for the electrons in the nanostructures, and larger electric fields are thus excited around the nanostructures. Their work, entitled "Enhancing the electric fields around the nanorods by using metal grooves", was published in SCIENCE CHINA Physics, Mechanics & Astronomy 2012, vol. 55 (10).

SERS is one of the most promising applications of the enhanced optical fields generated by the excitation of local surface plasmons in metal nanostructures. The SERS spectrum reveals the vibration modes of molecules, thus conveying specific information with fingerprint-level accuracy. Also, the sensitivity of SERS is one of the highest among the currently available analytical techniques, potentially leading to single molecule detection. Although the SERS signal from a particular molecule originates from both chemical and electromagnetic contributions, the dominant factor in SERS is a result of the local electromagnetic field enhancement caused by the resonant excitation of localized surface plasmons in metal nanostructures.

Because the surface plasmon resonance depends strongly on the shape of the nanostructures, nanostructures with different topological shapes were prepared to enhance the local electric fields. It was found that nanostructure pairs and nanogalaxies could also achieve stronger electric fields because of the electric field couplings or cascade electric field enhancements in the nanosystems.

Unlike previous methods of building the SERS substrates, ZHANG Zhongyue and his group presented a novel scheme to enhance the electric fields around the nanostructures. By manipulating the incident wave, the superposition of the electric fields of multiple beams of light works as the excitation source. When the phase differences between the multiple beams of light are designed appropriately, the excitation fields for electron oscillations in the nanostructures are much greater than those at normal incidence. The electric fields around these nanostructures are also larger than those at normal incidence. The starting point of this scheme is the enhancement of the excitation field for the electron oscillations in the nanostructures, which does not conflict with previous designs that varied the topological shapes of the nanostructures or combined nanostructures to generate larger electric fields.

Following the previously discussed schemes, ZHANG Zhongyue and his group presented the silver nanorod-groove system for SERS substrates. The grooves are used to manipulate the incident waves. The superposition of the electric fields of multiple beams of light works to excite the electron oscillations in the nanorods. As a result, the electric fields around the nanorods in the nanorod-groove system are much greater than those around individual nanorods and those in the nanorod-film system.

For the nanorod-groove system, even with fabrication defects related to the oblique angle of the groove and the location of the nanorod, numerical calculations also show that larger electric fields can be excited around the nanorods. Although the separation distances between the nanorods affect the electric field distributions, the electric fields are always larger than those around individual nanorods and those around the nanorods in the nanorod-film system. Therefore, the nanorod-groove system provides a good structure to further enhance the local electric fields around the nanorods.

See the article: Zhao Y. N., Qin Y., Cao W., et al. Enhancing the electric fields around the nanorods by using metal grooves. SCI CHINA Phys. Mech. Astron., 2012, 55 (10): 1763-1768

ZHANG Zhongyue | EurekAlert!
Further information:
http://www.snnu.edu.cn

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>