Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rare snapshot of a planetary construction site

24.10.2013
The unusual disk around the star HD 21997 contains both gas and dust

Planets are formed in disks of gas and dust around nascent stars. Now, combined observations with the compound telescope ALMA and the Herschel Space Observatory have produced a rare view of a planetary construction site in an intermediate state of evolution:


Left: Cosmic delivery room: ALMA images of the disk around HD 21997. The top image shows the emission of cold dust grains, situated in a ring around the central star. The lower image displays the emission from carbon monoxide, and shows that gas can also be found closer to the star than dust. © Á. Kóspál (ESA) / A. Moór (Konkoly-Observatory)

Right: Turbulent disk: this image depicts the velocity of the gas around HD 21997. The red-coloured parts of the disk move away from us, while the blue-coloured parts move towards us, indicating that the gas is rotating/orbiting around the central star.
© Á. Kóspál (ESA) / A. Moór (Konkoly-Observatory)

Contrary to expectations, the disk around the star HD 21997 appears to contain both primordial gas left over from the formation of the star itself and dust that appears to have been produced in collisions between planetesimals - small rocks that are the building blocks for the much larger planets. This is the first direct observation of such a “hybrid disk”, and likely to require a revision of current models of planet formation.

When a star similar to our Sun is born, it is surrounded by a disk of dust and gas. Within that disk, the star’s planetary system begins to form: The dust grains stick together to build larger, solid, kilometer-sized bodies known as planetesimals. Those either survive in the form of asteroids and comets, or clump together further to form solid planets like our Earth, or the cores of giant gas planets.

Current models of planet formation predict that, as a star reaches the planetesimal stage, the original gas should quickly be depleted. Some of the gas falls into the star, some is caught up by what will later become giant gas planets like Jupiter, and the rest is dispersed into space, driven by the young star’s intense radiation. After 10 million years or so, all the original gas should be gone.

But now a team of astronomers from the Netherlands, Hungary, Germany, and the US has found what appears to be a rare hybrid disk, which contains plenty of original gas, but also dust produced much later in the collision of planetesimals. As such, it qualifies as a link between an early and a late phase of disk evolution: the primordial disk and a later debris phase.

The astronomers used both ESA’s Herschel Space Observatory and the compound telescope ALMA in Chile to study the disk around the star HD 21997, which lies in the Southern constellation Fornax, at a distance of 235 light-years from Earth. HD 21997 has 1.8 times the mass of our Sun and is around 30 million years old.

The Herschel and ALMA observations show a broad dust ring surrounding the star at distances between about 55 and 150 astronomical units (one astronomical unit is the average Earth-Sun distance). But the ALMA observations also show a gas ring. Surprisingly, the two do not coincide: “The gas ring starts closer to the central star than the dust," explains Ágnes Kóspál from ESA, principal investigator of the ALMA proposal. "If the dust and the gas had been produced by the same physical mechanism, namely by the erosion of planetesimals, we would have expected them to be at the same location. This is clearly not the case in the inner disk."

Attila Moór from Konkoly Observatory adds: “Our observations also showed that previous studies had grossly underestimated the amount of gas present in the disk. Using carbon monoxide as a tracer molecule, we find that the total gas mass is likely to amount to between 30 and 60 times the mass of the Earth.” That value is another indication that the disk is made of primordial material – gas set free in collisions between planetesimals could never explain this substantial quantity.

Thomas Henning from the Max-Planck Institute for Astronomy says: “The presence of primordial gas around the 30 million-year-old HD 21997 is puzzling. Both model predictions and previous observations show that the gas in this kind of disk around a young star should be depleted within about 10 million years."

The team is currently working on finding more systems like HD 21997 for further studies of hybrid disks, and to find out how they fit within the current paradigm of planet formation – or the ways in which the models need to be changed.

Contact

Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200
Fax: +49 6221 528-339
Email: henning@­mpia.de
Dr. Ágnes Kóspál
European Space Agency, Noordwijk
Phone: +31 71 565-4508
Email: akospal@­rssd.esa.int
Dr. Attila Moór
Konkoly Observatory, Budapest
Phone: +36 1 391-9326
Email: moor@­konkoly.hu
Dr. Markus Pössel
Press & Public Relations
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261
Email: poessel@­mpia.de
Original publication
Kóspál et al.
ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997

Astrophysical Journal, 24 October 2013

Moór et al.
ALMA continuum observations of a 30 Myr old gaseous debris disk around HD 2199
Astrophysical Journal, 24 October 2013

Prof. Dr. Thomas Henning | Max-Planck-Institute
Further information:
http://www.mpg.de/7582059/snapshot-planetary-construction-site

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>