Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quasiparticle collider

12.05.2016

Collision experiments in semiconductors come into reach

Our standard model of the smallest bits of matter rests upon evidence gathered from particle accelerators and collider experiments. A team of physicists from Regensburg (Germany), Marburg (Germany), and Santa Barbara (USA) have now realized a collider for particles in solids. This fundamentally new concept will be reported in the upcoming issue of Nature.


Electron (blue) and hole (red) are collided within a tungsten diselenide crystal (lattice at the bottom). The energy gained is released in high-energy photons (brightly coloured rays).

Fabian Langer

Already little children tend to smash all sorts of things together to learn about their interactions and properties. Particle colliders apply this natural idea to study the building blocks of matter. In the early 1900’s, Ernest Rutherford shot  α-particles onto gold foils and concluded from their scattering properties that atoms contain their mass in a very small nucleus. A hundred years later, the greatest collaboration in modern science smashed protons into each other in the pursuit and discovery of the Higgs boson.

Such an elemental collider concept is absent in solid-state research, although our modern technology crucially depends on knowing the structural and electronic properties of solids. In a crystal, the complex interaction of the billions upon billions of particles boils down to simple entities, so-called quasiparticles. However, it is extremely difficult to single out specific quasiparticles among a large ensemble of them.

A team of physicists from Germany and the US have now succeeded in smashing such elementary excitations of a solid into each other. Since the quasiparticles only exist for a flash of time, it was crucial to operate on ultrashort timescales. If one second was compared to the age of the universe, a quasiparticle would exist only for a few hours.

The scientists used a unique laser source (terahertz high-field lab, Regensburg) to produce hard evidence on collisions within excitons, which are pairs of electrons and holes (electron vacancies) bound by the attractive Coulomb-force between them, in a thin crystal of tungsten diselenide. A femtosecond optical pulse (1 femtosecond equals a millionth of a billionth of a second) creates excitons at a precise time with respect to an intense light pulse in the terahertz spectral regime (1 terahertz means one trillion oscillations per second).

The lightwave of the terahertz pulse accelerates the constituents of the exciton, i.e. electrons and holes, within a period shorter than a single oscillation of light. The experiment shows that only excitons created at the right time lead to electron–hole collisions, just as in conventional synchrotron accelerators. This re-collision generates ultrashort light bursts encoding key aspects of the solid. The observations in the laboratory are supported and explained by a quantum mechanical simulation carried out by physicists from the University of Marburg.

These time-resolved collision experiments in a solid prove that basic collider concepts can be utilized to transfer versatile methods from particle physics to solid-state research and shed new light on quasiparticles and many-body excitations in condensed matter systems. Ultimately, this approach might lead to the clarification of some of the most outstanding enigmas of condensed matter physics such as the binding mechanism of Cooper pairs in high temperature superconductors.

Original publication:
F. Langer, M. Hohenleutner, C. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, and R. Huber, Lightwave-driven quasiparticle collisions on a sub-cycle timescale, Nature 2016
Publication: doi 10.1038/nature17958

Contact:
Prof. Dr. Rupert Huber
Universität Regensburg
Universitätsstraße 31
93053 Regensburg
Germany
E-Mail: rupert.huber@physik.uni-regensburg.de

Prof. Dr. Mackillo Kira
Philipps-Universität Marburg
Renthof 5
35032 Marburg
Germany
E-Mail: mackillo.kira@physik.uni-marburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>