Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quasiparticle collider

12.05.2016

Collision experiments in semiconductors come into reach

Our standard model of the smallest bits of matter rests upon evidence gathered from particle accelerators and collider experiments. A team of physicists from Regensburg (Germany), Marburg (Germany), and Santa Barbara (USA) have now realized a collider for particles in solids. This fundamentally new concept will be reported in the upcoming issue of Nature.


Electron (blue) and hole (red) are collided within a tungsten diselenide crystal (lattice at the bottom). The energy gained is released in high-energy photons (brightly coloured rays).

Fabian Langer

Already little children tend to smash all sorts of things together to learn about their interactions and properties. Particle colliders apply this natural idea to study the building blocks of matter. In the early 1900’s, Ernest Rutherford shot  α-particles onto gold foils and concluded from their scattering properties that atoms contain their mass in a very small nucleus. A hundred years later, the greatest collaboration in modern science smashed protons into each other in the pursuit and discovery of the Higgs boson.

Such an elemental collider concept is absent in solid-state research, although our modern technology crucially depends on knowing the structural and electronic properties of solids. In a crystal, the complex interaction of the billions upon billions of particles boils down to simple entities, so-called quasiparticles. However, it is extremely difficult to single out specific quasiparticles among a large ensemble of them.

A team of physicists from Germany and the US have now succeeded in smashing such elementary excitations of a solid into each other. Since the quasiparticles only exist for a flash of time, it was crucial to operate on ultrashort timescales. If one second was compared to the age of the universe, a quasiparticle would exist only for a few hours.

The scientists used a unique laser source (terahertz high-field lab, Regensburg) to produce hard evidence on collisions within excitons, which are pairs of electrons and holes (electron vacancies) bound by the attractive Coulomb-force between them, in a thin crystal of tungsten diselenide. A femtosecond optical pulse (1 femtosecond equals a millionth of a billionth of a second) creates excitons at a precise time with respect to an intense light pulse in the terahertz spectral regime (1 terahertz means one trillion oscillations per second).

The lightwave of the terahertz pulse accelerates the constituents of the exciton, i.e. electrons and holes, within a period shorter than a single oscillation of light. The experiment shows that only excitons created at the right time lead to electron–hole collisions, just as in conventional synchrotron accelerators. This re-collision generates ultrashort light bursts encoding key aspects of the solid. The observations in the laboratory are supported and explained by a quantum mechanical simulation carried out by physicists from the University of Marburg.

These time-resolved collision experiments in a solid prove that basic collider concepts can be utilized to transfer versatile methods from particle physics to solid-state research and shed new light on quasiparticles and many-body excitations in condensed matter systems. Ultimately, this approach might lead to the clarification of some of the most outstanding enigmas of condensed matter physics such as the binding mechanism of Cooper pairs in high temperature superconductors.

Original publication:
F. Langer, M. Hohenleutner, C. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, and R. Huber, Lightwave-driven quasiparticle collisions on a sub-cycle timescale, Nature 2016
Publication: doi 10.1038/nature17958

Contact:
Prof. Dr. Rupert Huber
Universität Regensburg
Universitätsstraße 31
93053 Regensburg
Germany
E-Mail: rupert.huber@physik.uni-regensburg.de

Prof. Dr. Mackillo Kira
Philipps-Universität Marburg
Renthof 5
35032 Marburg
Germany
E-Mail: mackillo.kira@physik.uni-marburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>