Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum connection between light and mechanics

02.02.2012
Optomechanical interactions
Researchers supported by the Swiss National Science Foundation (SNSF) have demonstrated a microscopic system in which light can be converted into a mechanical oscillation and back. This interaction is so strong that it becomes possible to control the motion of the oscillator at the level where quantum mechanics governs its behaviour.

Since the early 20th century, it is known that the movement of objects is ultimately governed by the laws of quantum mechanics, which predict some intriguing phenomena: An object could simultaneously be in two places at the same time, and it should always be moving a little, even at a temperature of absolute zero - the oscillator is then said to be in its quantum ground state. Yet we never experience such behaviour in the things we see around us and interact with in daily life.

Quantum strangeness

Indeed, quantum effects can only be observed on very well isolated systems, where the coupling to the surrounding environment is extremely weak. For large objects, the unavoidable coupling quickly washes out the quantum properties, in a process known as decoherence. Until recently, scientists were only able to observe quantum mechanical traits in the motion of tiny systems, such as single atoms or molecules. Now, a team of physicists in the EPFL’s Laboratory of Photonics and Quantum Measurement directed by Tobias Kippenberg has shown that it is possible to control the motion of an object, sufficiently large to be seen with the naked eye, at the level where quantum mechanics dominates. They achieve this by illuminating the object with laser light. The results are published in this week’s edition of Nature magazine*.

A ring of light

The structure is a carefully crafted glass donut on a microchip, with a diameter of 30 micrometres (about one half of a hair’s diameter) which can vibrate at a well-defined frequency. At the same time, it acts as a racetrack for light, which can circle around the circumference of the donut. In turning the bend, the light exerts a little force on the glass surface, an effect called 'radiation pressure'. Although this force is very small, in these structures it can become appreciable since light circles around the structure up to a million times before being lost. The radiation pressure force can make the ring move, causing it to vibrate like a finger running along the rim of a wineglass. But it can in fact also dampen the vibrations, and thus cool down the oscillatory motion.

Cold, colder, ...

Cooling is crucial to reaching the regime of quantum mechanical motion, as this is normally overshadowed by random thermal fluctuations. For this reason, the structure is brought to a temperature of less than one degree above absolute zero. Radiation pressure damping by laser light launched into the donut then cools the motion down by an extra factor 100. The oscillator is cooled so much that it spends a large fraction of the time in its quantum ground state. But even more importantly: The interaction between light and the movement of the oscillator can be made so strong that the two form an intimate connection. A small excitation in the form of a light pulse can fully transform into a small vibration and back again. For the first time, this transformation between light and motion is made to occur within a time that is short enough such that the quantum properties of the original light pulse are not lost in the process through decoherence. By outpacing decoherence, the current results provide a powerful way to control the quantum properties of the oscillator motion, and see the peculiar predictions of quantum mechanics at play in human-made objects.

* E. Verhagen, S. Deléglise, S. Weis, A. Schliesser and T. J. Kippenberg (2012). Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature online DOI: 10.1038/nature10787
(available as a pdf-file from the SNSF; e-mail: com@snf.ch)

Contact:
Professor Tobias Kippenberg
Laboratory of Photonics and Quantum Measurements
EPFL
CH-1015 Lausanne
E-mail: tobias.kippenberg@epfl.ch
Tel: +41 (0)21 693 44 28

Kommunikation SNF | idw
Further information:
http://www.epfl.ch
http://www.snf.ch

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>