Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Potential Rosetta Stone of High Temperature Superconductivity

08.04.2015

Discovery paves the way to quantitatively investigate the interplay among magnetism, superconductivity and disorder in high temperature superconductors.

The Science


Image courtesy of N. J. Curro (UC Davis) and Los Alamos National Laboratory

Numerical simulation of the magnetic inhomogeneity (red = magnetism, blue = superconductivity) caused by replacing 1% of the indium atoms in a superconductor (CeCoIn5) with cadmium atoms. The field of view is approximately 100 nanometers along each edge. (Cover Image from Seo et al., Nature Physics, 10, February 2014).

High purity single crystals of superconducting material (CeCoIn5) with the highest observed superconducting temperature for a cerium-based material enabled investigation of the relationship among magnetism, superconductivity, and disorder by strategic substitution of certain atoms with others (dopants) in the superconductor.

The Impact

Just as the Rosetta Stone has the same message written in three different scripts giving scholars key insights into ancient languages, the subject material (CeCoIn5), by virtue of its high purity, allows study of the interplay between magnetism, superconductivity, and disorder in three different classes of unconventional superconductors (cuprates, pnictides, and heavy fermions). The versatile model system could help researchers decipher the complex emergent phenomena in different classes of unconventional superconductors and in the development of a complete theory for the high-temperature superconductivity.

Summary

Superconductivity enables the flow of electricity without any loss of energy, but this extremely low temperature phenomenon disappears above a critical temperature (Tc). Since the discovery of a new class of materials in 1986, known as unconventional superconductors, that preserves superconductivity at temperatures much higher than previously known conventional superconductors, the scientific community has been on the quest to learn about the complete mechanisms for the unconventional superconductivity to enable the design of superconducting materials that operate near room temperature.

In general, materials discovery for higher Tc superconductors has been pursued by controlled doping (strategic replacement of certain elements with others) of a starting material with an already high Tc. Although this approach seems to work to certain extent, predicting the superconducting behavior of newly synthesized materials remains a major challenge due to several complexities including the disorder in the crystalline materials.

An international team led by scientists at Los Alamos National Laboratory has demonstrated that the compound CeCoIn5 with incredibly high purity and the highest superconducting temperature for a cerium-based material could serve as an ideal system to investigate the effect of disorder in the materials. Magnetic fluctuations, a driver for unconventional superconductivity, are indeed observed in pristine CeCoIn5, but locally disappear in the material doped with a small amount of cadmium (replacing indium). Surprisingly, the superconducting transition temperature of the doped material remained nearly unaffected.

This work shows that static 'droplets' of magnetism form around the doped atoms, but they do not impact the superconductivity in this material. It is expected that further research on this material will enable deciphering of other aspects of unconventional superconductivity that could pave the way to the development of a more complete theory for this complex emergent phenomenon.

Funding

DOE Office of Science, Basic Energy Sciences program. International support for co-authors was provided by Canada, France, Switzerland, Korea, and China.

Publications

S. Seo, X. Lu, J.-X. Zhu, R. R. Urbano, N. Curro, E. D. Bauer, V. A. Sidorov, T. Park, Z. Fisk, and J. D. Thompson, "Disorder in quantum critical superconductors." Nature Physics 10, 120 (2014).

S. Gerber, M. Bartkowiak, J.L. Gavilano, E. Ressouche, N. Egetenmeyer, C. Niedermayer, A.D. Bianchi, R. Movshovich, E.D. Bauer, J.D. Thompson, and M. Kenzelmann, "Switching of magnetic domains reveals spatially inhomogeneous superconductivity." Nature Physics 10, 126-129 (2014).

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>