Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Potential Rosetta Stone of High Temperature Superconductivity


Discovery paves the way to quantitatively investigate the interplay among magnetism, superconductivity and disorder in high temperature superconductors.

The Science

Image courtesy of N. J. Curro (UC Davis) and Los Alamos National Laboratory

Numerical simulation of the magnetic inhomogeneity (red = magnetism, blue = superconductivity) caused by replacing 1% of the indium atoms in a superconductor (CeCoIn5) with cadmium atoms. The field of view is approximately 100 nanometers along each edge. (Cover Image from Seo et al., Nature Physics, 10, February 2014).

High purity single crystals of superconducting material (CeCoIn5) with the highest observed superconducting temperature for a cerium-based material enabled investigation of the relationship among magnetism, superconductivity, and disorder by strategic substitution of certain atoms with others (dopants) in the superconductor.

The Impact

Just as the Rosetta Stone has the same message written in three different scripts giving scholars key insights into ancient languages, the subject material (CeCoIn5), by virtue of its high purity, allows study of the interplay between magnetism, superconductivity, and disorder in three different classes of unconventional superconductors (cuprates, pnictides, and heavy fermions). The versatile model system could help researchers decipher the complex emergent phenomena in different classes of unconventional superconductors and in the development of a complete theory for the high-temperature superconductivity.


Superconductivity enables the flow of electricity without any loss of energy, but this extremely low temperature phenomenon disappears above a critical temperature (Tc). Since the discovery of a new class of materials in 1986, known as unconventional superconductors, that preserves superconductivity at temperatures much higher than previously known conventional superconductors, the scientific community has been on the quest to learn about the complete mechanisms for the unconventional superconductivity to enable the design of superconducting materials that operate near room temperature.

In general, materials discovery for higher Tc superconductors has been pursued by controlled doping (strategic replacement of certain elements with others) of a starting material with an already high Tc. Although this approach seems to work to certain extent, predicting the superconducting behavior of newly synthesized materials remains a major challenge due to several complexities including the disorder in the crystalline materials.

An international team led by scientists at Los Alamos National Laboratory has demonstrated that the compound CeCoIn5 with incredibly high purity and the highest superconducting temperature for a cerium-based material could serve as an ideal system to investigate the effect of disorder in the materials. Magnetic fluctuations, a driver for unconventional superconductivity, are indeed observed in pristine CeCoIn5, but locally disappear in the material doped with a small amount of cadmium (replacing indium). Surprisingly, the superconducting transition temperature of the doped material remained nearly unaffected.

This work shows that static 'droplets' of magnetism form around the doped atoms, but they do not impact the superconductivity in this material. It is expected that further research on this material will enable deciphering of other aspects of unconventional superconductivity that could pave the way to the development of a more complete theory for this complex emergent phenomenon.


DOE Office of Science, Basic Energy Sciences program. International support for co-authors was provided by Canada, France, Switzerland, Korea, and China.


S. Seo, X. Lu, J.-X. Zhu, R. R. Urbano, N. Curro, E. D. Bauer, V. A. Sidorov, T. Park, Z. Fisk, and J. D. Thompson, "Disorder in quantum critical superconductors." Nature Physics 10, 120 (2014).

S. Gerber, M. Bartkowiak, J.L. Gavilano, E. Ressouche, N. Egetenmeyer, C. Niedermayer, A.D. Bianchi, R. Movshovich, E.D. Bauer, J.D. Thompson, and M. Kenzelmann, "Switching of magnetic domains reveals spatially inhomogeneous superconductivity." Nature Physics 10, 126-129 (2014).

Contact Information
Kristin Manke

Kristin Manke | newswise
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>