Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new particle has been discovered -- chances are, it is the Higgs boson

04.07.2012
The long and complicated journey to detect the Higgs boson, which started with one small step about 25 years ago, might finally have reached its goal. This was reported by LHC particle accelerator scientists today at the European Laboratory for Particle Physics, CERN, near Geneva.

The Higgs boson is the final building block that has been missing from the "Standard Model," which describes the structure of matter in the universe. The Higgs boson combines two forces of nature and shows that they are, in fact, different aspects of a more fundamental force. The particle is also responsible for the existence of mass in the elementary particles.

Weizmann Institute scientists have been prominent participants in this research from its onset. Prof. Giora Mikenberg was for many years head of the research group that searched for the Higgs boson in CERN's OPAL experiment. He was then leader of the ATLAS Muon Project – one of the two experiments that eventually revealed the particle. Prof. Ehud Duchovni heads the Weizmann Institute team that examines other key questions at CERN. Prof. Eilam Gross is currently the ATLAS Higgs physics group convener. In the Weizmann team three scientific "generations" are represented: Mikenberg was Duchovni's supervisor, who was, in turn, Gross's supervisor.

Gross: "This is the biggest day of my life. I have been searching for the Higgs since I was a student in the 1980's. Even after 25 years, it still came as a surprise. No matter what you call it – we are no longer searching for the Higgs but measuring its properties. Though I believed it would be found, I never dreamed it would happen while I was holding a senior position in the global research team."

Most of us experience the world as a diverse and complex place. But the physicists among us are not content with visible reality. They are striving to get to the bottom of that reality and to see whether it is, as they think, based on the absolute simplicity displayed by the early universe. They expect to observe a range of particles that are different "ensembles" of a handful of elementary particles. The scientists are hoping to see a unification of the four fundamental forces of nature that act on these particles (the weak force responsible for radioactivity, electromagnetic force, the strong force responsible for the existence of protons and neutrons, and gravitation).

The first step in the journey to unify the forces was completed with the almost certain discovery of the Higgs particle: The union of two elementary forces – the electromagnetic and weak force, to become the electroweak force.

One aspect of the Higgs boson, named after the Scottish physicist Peter Higgs, manifests itself in the giving of mass to the weak force carriers – the "W" and "Z" particles. (The electromagnetic force carrier, the photon, remains massless.)

The Largest Machine in the World

In the effort to discover the Higgs boson, unify the fundamental forces and understand the origin of mass in the universe, scientists built the world's largest machine: a particle accelerator nestled in a 27-km-long circular tunnel, 100 meters beneath the border between France and Switzerland, in the European particle physics laboratory, CERN, near Geneva.

This accelerator, called LHC (Large Hadron Collider), accelerates beams of protons up to 99.999998% the speed of light. According to the theory of relativity, this increases their mass by 7,500 times that of their normal resting mass. The accelerator aims the beams straight at each other, causing collisions that release so much energy, the protons themselves explode. For much less than the blink of an eye, conditions similar to those that existed in the universe in the first fraction of a second after the Big Bang are present in the accelerator.

As a result, particles of matter are turned into energy, in accordance with Albert Einstein's famous equation describing the conversion of matter into energy: E=mc2. The energy then propagates through space and the system cools. (Something similar happened in the early evolution of the universe.) Consequently, energy turns back into particles of matter and the process is repeated until particles that can exist in reality as we know it are formed.

The collisions produce energetic particles, some of which exist for extremely short periods of time. The only way to discern their existence is to identify the footprints they leave behind. For this purpose, a variety of particle detectors were developed, each optimized for capturing particular types of particles.

Statistics

The likelihood of creating the Higgs boson in a single collision is similar to that of randomly extracting a specific living cell from the leaf of a plant, out of all the plants growing on Earth. To cope with this task, Weizmann Institute scientists, headed by Prof. Mikenberg, developed unique particle detectors, which were manufactured at the Institute, and in Japan and China. These detectors have been adapted to detect muon particles. In some of the very rare collisions that produce Higgs particles, the footprint of the Higgs particle – that which is recorded in the detectors – is four energetic muons. Thus, the detection of such muons provides circumstantial evidence for the existence of the Higgs particle.

The scientists analyzed data from a thousand trillion proton collisions; in these Higgs bosons are created along with many other similar particles. Evidence to suggest the existence of the Higgs arises through searches for anomalies in the collected data (in comparison with the expected data if such a particle does not exist). This search focuses on the estimated mass of the particle: 126 trillion electron volts (Gev). When the scientists do manage to find such anomalies, they must then rule out the possibility that it is due to statistical fluctuation.

The calculations carried out by scientists in recent weeks, in which Prof. Gross played a central role, have revealed, with a high degree of statistical significance, a new particle with a mass similar to the expected mass of the Higgs. The wording is purposely cautious, leaving room for the possibility that a new particle other than the Higgs can be found within this mass range. The probability that this is, indeed, a new particle, is quite low. (But if it were, in truth, a different particle, say some physicists, things will start to get "really interesting.")

CERN

CERN scientists invented and developed the computer language and basic concepts that later served as the basis for the establishment of the Internet. In fact, the first server of the "World Wide Web" was activated in CERN to facilitate communication between scientists from around the globe participating in experiments carried out locally. The organization also served as a model for the establishment of the European Union, and its influence on Europe's technology and economy is reminiscent of the American space program.

The LHC particle accelerator is based on superconducting electromagnets working at very low temperatures: less than two degrees above absolute zero (minus 271° Celsius). It generates about one billion particle collisions per second: If they were people, it would be as if each person on the planet meets every one of the six billion inhabitants of the world every six seconds. Calculating and analyzing data from these collisions is like trying to understand what all the inhabitants of the world are saying, while each is holding 20 telephone conversations at once.

This experimental system includes the world's largest superconducting electromagnets, built in conjunction with Israeli companies. The entire structure includes 10,000 radiation detectors spaced just one millimeter apart, has a volume of 25,000 cubic meters and features half a million electronic channels. Most of the muon radiation detectors were built from components produced in Israel. A unique laser system tracks the exact location of the detectors with an accuracy of 25 microns (half the thickness of a human hair).

Prof. Ehud Duchovni's research is supported by the Friends of Weizmann Institute in memory of Richard Kronstein; the Nella and Leon Benoziyo Center for High Energy Physics; and the Yeda-Sela Center for Basic Research. Prof. Duchovni is the incumbent of the Professor Wolfgang Gentner Professorial Chair of Nuclear Physics.

Prof. Eilam Gross's research is supported by the Friends of Weizmann Institute in memory of Richard Kronstein.

Prof. Giora Mikenberg's research is supported by the Nella and Leon Benoziyo Center for High Energy Physics, which he heads. Prof. Mikenberg is the incumbent of the Lady Davis Professorial Chair of Experimental Physics.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>