Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel platform for future spintronic technologies

13.10.2014

Spintronics is an emerging field of technology where devices work by manipulating the spin of electrons rather than their charge.

The field can bring significant advantages to computer technology, combining higher speeds with lower energy consumption. Spintronic circuits need ways to control electron spin without interference from electron charge.

Scientists at EPFL, working with Université Paris-Sud and Paul Scherrer Institut, have discovered that a common insulating material behaves as a perfect spintronic conductor because it is not affected by background electron charge. In addition, the material's properties make it an ideal platform for directly observing a strange subatomic particle that could one day lead to a different, more stable type of quantum computers.

Spintronics

Spintronics (spin-transport or spin-based electronics) is a technology that exploits a quantum property of electrons called spin. Although difficult to describe in everyday terms, electron spin can be loosely compared to the rotation of a planet or a spinning top around its axis.

Spin exists in either of two directions: "up" or "down", which can be described respectively as the clockwise or counter-clockwise rotation of the electron around its axis. Ultimately, spin is what gives electrons their magnetic properties, influencing the way they behave when they enter a magnetic field.

The different directions of electron spin can be used to encode information, much like the binary code used in digital communication. Spintronics can therefore open up a new generation of devices that combine conventional microelectronics with spin-dependent effects, overcoming the limitations of today's electronics like speed and energy consumption.

The main challenge is being able to actually control electron spin, turning "up" or "down" as needed. This can be achieved with certain materials, but the problem is that these are often susceptible to interference from the charge of electrons.

An ideal material for spintronics

The team of Hugo Dil at EPFL, working with scientists from Paris and the PSI, has shown that a transparent insulating material, which normally does not conduct electrical charge, shows spin-dependent properties. The scientists used a method called SARPES, which has been perfected by Hugo Dil's group. The data showed that the electron gas at the surface of strontium titanate (SrTiO3) is spin-polarized, which means that it could be used to control the spin of electrons.

"This is interesting because it is the first evidence of a large spin polarization effect on a truly insulating substrate", says Hugo Dil. The discovery has significant implications for the future of spintronics, because it can lead to the development of spin-polarized materials that are not susceptible to interference from non spin-polarized electrical charge, allowing for finer and better control of electron spin.

A new particle for a different kind of quantum computer

Beyond spintronics, this insulating material might also be important for quantum computing, as it could be used to directly observe an elusive, strange particle called the Majorana fermion. This particle is unique because it actually is its own antiparticle as well.

Sometimes referred to as the "ghost particle", the Majorana fermion has zero energy, zero moment, zero spin, and, so far, has never been observed unambiguously. In the future, Majorana fermions could become the foundation for a different kind of quantum computer that would, in theory, be exceptionally stable, as it would not be susceptible to external interference and noise.

###

This work represents an equal collaboration between Hugo Dil's group at EPFL (ICMP-SOIS), a group from the Université Paris-Sud (CSNSM & CNRS/IN2P3), and experts at Paul Scherrer Institut (Swiss Light Source).

Reference

Santander-Syro AF, Fortuna F, Bareille C, Rödel TC, Landolt G, Plumb NC, Dil JH, Radović M. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3. Nature Materials DOI: 10.1038/nmat4107

Nik Papageorgiou | Eurek Alert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>