Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel platform for future spintronic technologies

13.10.2014

Spintronics is an emerging field of technology where devices work by manipulating the spin of electrons rather than their charge.

The field can bring significant advantages to computer technology, combining higher speeds with lower energy consumption. Spintronic circuits need ways to control electron spin without interference from electron charge.

Scientists at EPFL, working with Université Paris-Sud and Paul Scherrer Institut, have discovered that a common insulating material behaves as a perfect spintronic conductor because it is not affected by background electron charge. In addition, the material's properties make it an ideal platform for directly observing a strange subatomic particle that could one day lead to a different, more stable type of quantum computers.

Spintronics

Spintronics (spin-transport or spin-based electronics) is a technology that exploits a quantum property of electrons called spin. Although difficult to describe in everyday terms, electron spin can be loosely compared to the rotation of a planet or a spinning top around its axis.

Spin exists in either of two directions: "up" or "down", which can be described respectively as the clockwise or counter-clockwise rotation of the electron around its axis. Ultimately, spin is what gives electrons their magnetic properties, influencing the way they behave when they enter a magnetic field.

The different directions of electron spin can be used to encode information, much like the binary code used in digital communication. Spintronics can therefore open up a new generation of devices that combine conventional microelectronics with spin-dependent effects, overcoming the limitations of today's electronics like speed and energy consumption.

The main challenge is being able to actually control electron spin, turning "up" or "down" as needed. This can be achieved with certain materials, but the problem is that these are often susceptible to interference from the charge of electrons.

An ideal material for spintronics

The team of Hugo Dil at EPFL, working with scientists from Paris and the PSI, has shown that a transparent insulating material, which normally does not conduct electrical charge, shows spin-dependent properties. The scientists used a method called SARPES, which has been perfected by Hugo Dil's group. The data showed that the electron gas at the surface of strontium titanate (SrTiO3) is spin-polarized, which means that it could be used to control the spin of electrons.

"This is interesting because it is the first evidence of a large spin polarization effect on a truly insulating substrate", says Hugo Dil. The discovery has significant implications for the future of spintronics, because it can lead to the development of spin-polarized materials that are not susceptible to interference from non spin-polarized electrical charge, allowing for finer and better control of electron spin.

A new particle for a different kind of quantum computer

Beyond spintronics, this insulating material might also be important for quantum computing, as it could be used to directly observe an elusive, strange particle called the Majorana fermion. This particle is unique because it actually is its own antiparticle as well.

Sometimes referred to as the "ghost particle", the Majorana fermion has zero energy, zero moment, zero spin, and, so far, has never been observed unambiguously. In the future, Majorana fermions could become the foundation for a different kind of quantum computer that would, in theory, be exceptionally stable, as it would not be susceptible to external interference and noise.

###

This work represents an equal collaboration between Hugo Dil's group at EPFL (ICMP-SOIS), a group from the Université Paris-Sud (CSNSM & CNRS/IN2P3), and experts at Paul Scherrer Institut (Swiss Light Source).

Reference

Santander-Syro AF, Fortuna F, Bareille C, Rödel TC, Landolt G, Plumb NC, Dil JH, Radović M. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3. Nature Materials DOI: 10.1038/nmat4107

Nik Papageorgiou | Eurek Alert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>