Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Key to Unlocking the Mysteries of Physics? Quantum Turbulence

22.04.2014

The recent discovery of the Higgs boson has confirmed theories about the origin of mass and, with it, offered the potential to explain other scientific mysteries.

But, scientists are continually studying other, less-understood forces that may also shed light on matters not yet uncovered. Among these is quantum turbulence, writes Katepalli Sreenivasan, an NYU University Professor, in a special issue of Proceedings of the National Academy of Sciences.

Sreenivasan’s introductory analysis, written with issue co-editors Carlo Barenghi of Newcastle University and Ladislav Skrbek of Prague’s Charles University, examines the direction and promise of this phenomenon.

Quantum turbulence is the chaotic motion—at very high rates—of fluids that exist at temperatures close to zero.

Observers as far back as Leonardo da Vinci have studied turbulence—a complex state of fluid motion. The Renaissance artist observed that water falling into a pond creates eddies of motion, thus realizing that the motion of water shaped the landscape.

Today, scientists study much bigger ponds—the universe and beyond—but remain focused on this phenomenon’s basic principles.

This is because of its fundamental significance in daily occurrences—for instance, the efficiency of jet engines depends on turbulence—as well as its impact on developments far beyond our observation, such as the generation of galactic magnetic fields.

However, many of its workings continue to elude comprehension.

“Turbulence still provides physicists, applied mathematicians, and engineers with a continuing challenge,” the authors write.

The PNAS issue focuses on a special form of turbulence, quantum turbulence, which appears in quantum fluids. These fluids differ from ordinary fluids in some fundamental ways—in addition to their vitality at near-zero temperatures. One, they can flow freely because they have no viscosity—or resistance hindering flow. And, two, their rotation is limited to vortex lines—in stark contrast to eddies in ordinary fluids, which vary in size, shape, and strength.

The introductory article co-authored by Sreenivasan, a professor in NYU’s Courant Institute of Mathematical Sciences and NYU’s Department of Physics as well as the Eugene Kleiner Professor at the Polytechnic School of Engineering, outlines the basic properties of quantum turbulence and considers the differences between quantum and classical turbulence.

“Our aim is to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics,” the authors write. “Further experimental studies of quantum turbulence, probing physical conditions not known to Nature at temperatures many orders of magnitude lower, may uncover phenomena not yet known to physics.”

James Devitt | newswise
Further information:
http://www.nyu.edu

Further reports about: Mysteries Nature Physics Quantum Sreenivasan Turbulence chaotic fluids physics temperatures

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>