Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new approach to on-chip quantum computing

02.10.2014

New low-power method opens the door for easily fabricating future quantum communication and computing devices

Commercial devices capable of encrypting information in unbreakable codes exist today, thanks to recent quantum optics advances, especially the generation of photon pairs—tiny entangled particles of light.


Cross-polarized pump photons (red and blue) interact in the micro-ring resonator to directly generate cross-polarized correlated photons (green and yellow).

Credit: Lucia Caspani

Now, an international team of researchers led by professor Roberto Morandotti of INRS-EMT in Canada, is introducing a new method to achieve a different type of photon pair source that fits into the tiny space of a computer chip.

The team's method, which generates "mixed up" photon pairs from devices that are less than one square millimeter in area, could form the core of the next-generation of quantum optical communication and computing technology. The research will be presented at The Optical Society's (OSA) 98th Annual Meeting, Frontiers in Optics, being held Oct. 19-23 in Tucson, Arizona, USA.

One of the properties of light exploited within quantum optics is "photon polarization," which is essentially the direction in which the electric field associated with the photon oscillates. The research team set out to find a way to directly "mix up," or cross-polarize, the photons via a nonlinear optical process on a chip.

"While several efforts have been devoted to develop on-chip sources of polarization-entangled photons, the process typically used to generate these photons only allows the generation of photons with the same polarization as the laser beam used to pump the device — either both horizontal or vertical — after which entanglement can be achieved by accurately mixing these states. Now, we have found a way to directly generate cross-polarized photon pairs," says Lucia Caspani, a postdoctoral fellow at INRS-EMT and co-author of the Frontiers in Optics paper.

To generate the cross-polarized photons, Caspani and colleagues used two different laser beams at different wavelengths —one vertically polarized and another horizontally polarized. The approach, however, came with a potential pitfall: the classical process between the two pump beams could destroy the photons' fragile quantum state.

To address this challenge, the team, which also includes researchers from RMIT University in Australia and City University of Hong Kong, pioneered a new approach based on a micro-ring resonator—a tiny optical cavity with a diameter on the order of tens to hundreds of micrometers—that operates in such a way that energy conservation constraints suppress classical effects while amplifying quantum processes.

While a similar suppression of classical effects has been observed in gas vapors and complex micro-structured fibers, this is the first time it has been reported on a chip, thus opening a clear route for building scalable integrated devices.

"Our approach opens the door to directly mixing different polarizations on a chip," Caspani points out. "At very low power, our device directly generates photon pairs with orthogonal polarizations, which can be exploited for quantum communication and computing protocols."

The fabrication process of the chip is also compatible with that currently used for electronic chips. "It enables a future coexistence of our device with standard integrated circuits," says Caspani, which is a fundamental requirement for the widespread adoption of optical quantum technologies.

Presentation FTu2A.2, "Direct Generation of Orthogonally Polarized Photon Pairs via Spontaneous Non-Degenerate FWM on a Chip," takes place Tuesday, Oct. 21 at 11 a.m. MST at the Arizona Ballroom, Salon 8 at the JW Marriott Tucson Starr Pass Resort in Tucson.

PRESS REGISTRATION: A press room for credentialed press and analysts will be located in the Marriott, Sunday through Thursday, Oct. 19-23. Those interested in obtaining a press badge for FiO should contact OSA's Lyndsay Meyer at 202.416.1435 or lmeyer@osa.org.

About FiO/LS

Frontiers in Optics (FiO) 2014 is The Optical Society's (OSA) 98th Annual Meeting and is being held together with Laser Science, the 30th annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, fascinating invited speakers and a variety of special events spanning a broad range of topics in optics and photonics—the science of light—across the disciplines of physics, biology and chemistry. An exhibit floor featuring leading optics companies will further enhance the meeting. More information at http://www.FrontiersinOptics.org.

Lyndsay Meyer | Eurek Alert!

Further reports about: APS FiO Laser OSA Optical optics photon pairs photons polarization quantum computing quantum optics

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>