Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A nanoclutch for nanobots

25.05.2012
Chinese researchers have designed and tested simulations of a "nanoclutch," a speed regulation tool for nanomotors.

The nanoclutch consists of two carbon nanotubes (CNTs), one inside the other, separated by a film of water. Electrowetting forces control the friction between the water and the inner and outer walls of the CNTs.

When the two tubes are electrically charged, the water confined between them can transmit the torque from the inner tube to the outer tube, and the device is said to be in the engaged state.

When the CNTs are uncharged, the device is in the disengaged state. In a paper accepted to the American Institute of Physics' Journal of Applied Physics, the authors write that their proposed device can perform stepless speed regulation by changing the magnitude of the charge assigned to the CNT atoms.

Though further work is needed, they say the model may be helpful in designing and manufacturing nanorobots.

Title: Carbon Nanotube-Based Charge-Controlled Speed-Regulating Nanoclutch
Journal: Journal of Applied Physics
Authors: Zhong-Qiang Zhang (1), Hong-Fei Ye (2), Zhen Liu (3), Jian-Ning Ding (1), Guang-Gui Cheng (1), Zhi-Yong Ling (1), Yong-Gang Zheng (2), Lei Wang (4), and Jin-Bao Wang (5)
(1) Micro/Nano Science and Technology Center, Jiangsu University, China
(2) State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, China
(3) School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, China
(4) Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University, China

(5) School of Naval Architecture & Civil Engineering, Zhejiang Ocean University, China

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>