Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Multi-Wavelength View of Radio Galaxy Hercules A

30.11.2012
Spectacular jets powered by the gravitational energy of a supermassive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's cutting-edge tools, the Hubble Space Telescope's Wide Field Camera 3, and the recently upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico.

Some two billion light-years away, the yellowish elliptical galaxy in the center of the image appears quite ordinary as seen by Hubble in visible wavelengths of light.


NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA)

Spectacular jets powered by the gravitational energy of a supermassive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's cutting-edge tools, the Hubble Space Telescope's Wide Field Camera 3, and the recently upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico

The galaxy is roughly 1,000 times more massive than our Milky Way and harbors a 2.5-billion-solar-mass central black hole that is 1,000 times more massive than the black hole in the Milky Way. But the innocuous-looking galaxy, also known as 3C 348, has long been known as the brightest radio-emitting object in the constellation Hercules. Emitting nearly a billion times more power in radio wavelengths than our Sun, the galaxy is one of the brightest extragalactic radio sources in the entire sky.

The VLA radio data reveal enormous, optically invisible jets that, at one-and-a-half million light-years long, dwarf the visible galaxy from which they emerge. The jets are very-high-energy plasma beams, subatomic particles and magnetic fields shot at nearly the speed of light from the vicinity of the black hole. The outer portions of both jets show unusual ring-like structures suggesting a history of multiple outbursts from the supermassive black hole at the center of the galaxy.

The innermost parts of the jets are not visible because of the extreme velocity of the material; relativistic effects confine all of the light to a narrow cone aligned to the jets, so the light does not reach us. Far from the galaxy, the jets become unstable and break up into rings and wisps.

The entire radio source is surrounded by a very hot, X-ray-emitting cloud of gas, not seen in this optical-radio composite.

Hubble's view of the field also shows a companion elliptical galaxy very close to the center of the optical-radio source, which may be merging with the central galaxy. Several other elliptical and spiral galaxies that are visible in the Hubble data may be members of a cluster of galaxies. Hercules A is by far the brightest and most massive galaxy in the cluster.

Credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA)

For images and more information about Hercules A, visit:

http://hubblesite.org/news/2012/47
http://www.nasa.gov/hubble
http://heritage.stsci.edu/2012/47
http://www.nrao.edu/pr/2012/herca/
For more information, contact:
Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu
John Stoke
National Radio Astronomy Observatory, Charlottesville, Va.
434-244-6896
jstoke@nrao.edu
Dave Finley
National Radio Astronomy Observatory, Socorro, N.M.
575-835-7302
dfinley@nrao.edu
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the

telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington.

Ray Villard | EurekAlert!
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Motorcycle right behind the racing cyclist can improve time in Giro prologue
04.05.2016 | Eindhoven University of Technology

nachricht Planet Nine: A world that shouldn't exist
04.05.2016 | Harvard-Smithsonian Center for Astrophysics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

Motorcycle right behind the racing cyclist can improve time in Giro prologue

04.05.2016 | Physics and Astronomy

Scientists challenge conventional wisdom to improve predictions of bootstrap current

04.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>