Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A modern twist on Young’s slits


A landmark experiment on wave interference from the early 1800s is revisited using gold nanoparticles

In the eighteenth century, scientists faced a conundrum: is light a wave or a particle? One of strongest pieces of evidence to support the ‘wave view’ — the landmark double-slit experiment — was reported in 1804 by the scientist Thomas Young. Young passed coherent light through two closely spaced slits and observed a set of interference fringes, a result that occurs with wave phenomena like sound or water. This observation became the basis for the modern wave theory of light.

Example of the energy flow and optical vortices found around closely spaced gold nanoparticles. The effects resemble the field lines seen in Young’s slit experiments.

Copyright : 2014 A*STAR Data Storage Institute

Two hundred years later, Arseniy Kuznetsov and co-workers from the A*STAR Data Storage Institute, together with collaborators in Australia, Singapore, the United Kingdom and Russia, have performed an experiment analogous to Young’s experiments but using nanoscale objects (1). The team studied the light scattering in the visible and near-infrared wavelength regions from a cluster of two or three closely spaced gold plasmonic nanoparticles. They observed interference and resonance effects that resemble those seen in Young’s experiments.

In particular, while studying a trimer system consisting of three discrete metallic nanodisks of about 145 nanometers in diameter and 60 nanometers thick, the team found evidence for the presence of near-field, subwavelength-sized optical vortices and the circulation of electromagnetic energy (see image). This finding is very similar to what occurs to the energy flow pattern in a Young-type experiment performed with three slits.

One of the key issues in nanoplasmonics is the interaction between metallic nanoparticles at the nanoscale. “Even if the separation between two or multiple non-periodically arranged nanoparticles is of the order of wavelength, their interaction can be strong enough to change their scattering and absorption properties,” notes Kuznetsov. “This can be explained by the peculiarities of the Poynting vector (energy) flow around the nanoparticles and formation of optical vortices, which produce a pattern of field lines similar to Young’s classic experiment.”

The team’s findings, says Kuznetsov, not only expand our fundamental understanding of how light interacts with nanoclusters of metallic particles, but have both theoretical and practical applications. “They may also prove useful for applications such as improved solar cells and plasmonic biosensors.” However, their most remarkable application, he suggests, may be in the emerging area of nanoantennas.

In the future, the team is aiming to study the resonant properties and interactions of nanoparticles made from nonmetallic materials. In particular, they plan to investigate high-refractive index dielectric materials such as silicon, which, unlike metallic particles, do not suffer from high optical losses.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute 

Associated links

Journal information

Rahmani, M., Miroshnichenko, A. E., Lei, D. Y., Luk’yanchuk, B., Tribelsky, M. I. et al. Beyond the hybridization effects in plasmonic nanoclusters: Diffraction-induced enhanced absorption and scattering. Small 10, 576–583 (2013).

A*STAR Research | Research SEA News
Further information:

Further reports about: A*STAR Institute Storage Technology evidence experiments nanoparticles nanoscale twist wavelength

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>