Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A mini particle accelerator

19.11.2015

To build a particle accelerator the size of a shoe box – this is the goal of a research team being led by Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Stanford University in collaboration with eight international partners. The Gordon and Betty Moore Foundation is funding the project for the next five years with 13.5 million US dollars (approximately 12.5 million euros), around 2.44 million US dollars (approximately 2.26 million euros) of which will be allocated to FAU.

Particle accelerators are several kilometres long and costs many millions of euros; large ones cost over a billion euros. There are therefore only a small number of them available to researchers and the short time slots for experiments are allocated according to a strict schedule.


Not much larger than a one cent coin: the accelerator on a chip. With this new technology, particle accelerators – which are currently several kilometres long – could fit in a shoe box in the future.

Image: FAU/Joshua McNeur

However, the high costs and large size could be reduced in the future with the help of the new 'accelerator-on-a-chip' method – which would mean a drastic change for scientific research. 'The impact of shrinking accelerators can be compared to the evolution of computers that once occupied entire rooms and now can be worn around your wrist.

This advance means we may be able to expand particle acceleration into areas and communities that previously had no access to such resources,' explains Prof. Dr. Peter Hommelhoff from FAU's Chair of Laser Physics, one of the project's principle investigators.

'Based on our proposed revolutionary design, this prototype could set the stage for a new generation of "tabletop" accelerators, with unanticipated discoveries in biology and materials science and potential applications in security scanning, medical therapy and X-ray imaging,' adds co-principle investigator Prof. Dr. Robert Byer from Stanford University.

An accelerator on a chip

The accelerator-on-a-chip method that the project is using is based on experiments by the two principle investigators. Prof. Hommelhoff and Prof. Byer showed independently of one another that pulses of laser light can be used to accelerate electrons. In their experiment Prof. Hommelhoff and his team used the electron beam of an electron microscope, which they directed along the side of microstructured glass at extremely close proximity.

By focusing short, intense laser pulses on the electrons through the fine glass structure from the side, they were able to accelerate the electrons. Prof. Byer and his team demonstrated the same effect in a very similar experiment using much higher-energy electrons in a special particle accelerator. This resulted in the electrons being accelerated ten times faster than in conventional accelerators. The findings from the two studies, both published in 2013 in Physical Review Letters (Hommelhoff) and Nature (Byer), could make a new compact particle accelerator possible.

New challenges

Nevertheless, showing that particles can be accelerated in an electron microchip is just the beginning. The researchers now face new challenges, such as reducing the diameter of the electron beam by a factor of 1000. This is a difficult task, as Prof. Hommelhoff explains: 'We will have to consider the following: the electrons have to be kept in a perfectly straight line. However, it is not easy to direct them. You can imagine electrons like marbles that you want to push along a straight line. This is much easier with a long ruler than if you were to try it with a highlighter – mainly because the electrons repel one another.'

Furthermore, the researchers have to find a suitable way of producing the electrons and directing them precisely. This means that the new accelerator will have to include not only a chip-based accelerating component but also components for directing and focusing the electrons – and these components do not yet exist.

Finally, the researchers will have to find the best possible design for the microchips so that when they are connected they produce a working particle accelerator in which none of the particles get lost. The accelerator microchip is just one piece of the puzzle when it comes to creating a functioning particle accelerator. The key to success will be either to connect several microchips with different functions in series, allowing the electrons to be accelerated to high energies, or to produce all the required components on one larger microchip. The latter is the approach desired by the researchers.

According to Prof. Hommelhoff, whether the finished particle accelerator is actually the size of a shoe box, as small as a matchbox or in fact the size of a packing box is not that important. 'It is mainly about building a prototype that shows that particles accelerators can be made much smaller than they are currently,' he explains.

The project brings together internationally renowned experts in accelerator physics, laser physics, photonics, nanotechnology and nanofabrication. Alongside FAU and Stanford University, it involves three research centres – SLAC National Accelerator Laboratory in Menlo Park, USA, Deutsches Elektronen-Synchroton (DESY) in Hamburg and the Paul Scherrer Institute in Villingen, Switzerland – one company and five other universities – the University of California Los Angeles, Purdue University in Indiana, USA, the University of Hamburg, the Swiss Federal Institute of Technology in Lausanne and Technische Universität Darmstadt.

The Gordon and Betty Moore Foundation is one of the world's largest private foundations that supports scientific research and technical development, and has invested over one billion US dollars in the past. Further information about the Foundation is available at www.moore.org

Further information:
Prof. Dr. Peter Hommelhoff
Phone: +49 9131 8527090
peter.hommelhoff@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>