Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Meteorite Explodes on the Moon: Q&A with a Smithsonian Geophysicist

04.06.2013
A fiery explosion on the surface of the moon, visible to the naked eye, recently surprised NASA astronomers monitoring the moon for meteorite strikes.

Occurring March 17, it was the biggest explosion in the 8-year history of NASA’s Lunar Impact Monitoring program that shoots continual video of the moon through 14-inch telescopes on Earth. NASA announced the event on May 17 after an analyst noticed the strike on a digital video. Scientists estimate the meteor weighed 88 pounds, was about 16 inches wide, and hit the moon at 56,000 miles per hour.


Steve Roy, Marshall Space Flight Center

An artist’s rendering of a small but powerful meteor strike on the moon.

In this Q&A Smithsonian Geophysicist Bruce Campbell, of the Air and Space Museum’s Center for Earth and Planetary Studies, answers a few questions about the explosion and the geologic processes that shape the moon’s surface. For years Campbell has been using radio telescopes to see through the moon’s thick layer of dust and debris and create a detailed radar map of the moon’s ancient bedrock topography.

Q: Can the crater caused by this impact be seen from Earth?
Campbell: No. Based on the brightness of the flash researchers estimate the crater to be about 20 meters across, which is too small to be seen with a telescope from Earth. The Lunar Reconnaissance Orbiter [a NASA spacecraft currently orbiting the moon] however will be able to see the crater when it passes over that area of the moon sometime later this year. The Orbiter, which can see features down to about one-half meter in size, should be able to take a really nice image of the crater. It will be easy to spot as it should have a wide and bright spray of ejected material surrounding it.
Q: How deep is the moon’s dust at the spot where this meteorite hit?
Campbell: In this area [a region known as Mare Imbrium] the dust layer is easily anywhere from 15 to 25 feet deep. It’s a very thick layer and I don’t think this meteorite was big enough to have punched through all that dust to reach the moon’s bedrock. The energy of the explosion pushed the dust and other material upward and outward in large parabolic arcs. On Earth atmospheric drag would slow the dust making it fall at a much shorter distance from the crater than on the moon.
Q: Did the meteorite sink into the moon’s dust or break apart?
Campbell: Almost no recognizable large chunk of a meteorite like this one is going to survive. It hits the ground at such a speed that you actually get a shockwave inside the meteorite. The shockwave starts at the front where the meteorite hits and by the time it reaches the back of the meteorite it explodes. And so the meteorite is spread out all over that deposit of material, some in the crater itself and a lot in the spray of material around the crater.
Q: With no wind or water on the moon to cause erosion, is this crater now a permanent feature of the Moon?

Campbell: There is erosion on the moon which is coming from the exact process that caused this new crater. Think about it, that new 20-meter crater obliterated all the little craters that were in that spot before it. And it threw out dust that covered up and smoothed out other areas.

But even when fresh bedrock from beneath the dust is exposed by very large meteorite strikes, these new rocks are eventually broken down by the little bits of space dust zipping in and striking the moon day in and day out. In general, these tiny particles are traveling extremely fast. Most hit the ground at 2 kilometers per second or more. Even a particle of dust that’s moving at several kilometers per second will break a pretty good chunk off a rock on the ground.

Undetectable from Earth, these little particles are the dominant erosive effect on the moon…on a cosmic time scale these particles are just raining in. This crater is just part of that endless process of the soil gradually building up and rocks on the surface being broken down and craters being smoothed out. If you look at the pictures, the moon’s features are very rounded with gentle slopes; there are almost no sharp-edged hills on the moon.

Alison Mitchell | Newswise
Further information:
http://www.si.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>