Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matterless double-slit

11.01.2010
According to the foundations of quantum mechanics, two different given paths for quantum particles may interfere. Such a so-called "double-slit" scenario is put forward devoid of material constituents, consisting instead entirely of light.

This employs the equally fundamental concept of the structure of quantum vacuum, which mediates between incoming photons from a probe laser and the double-slit formed from two ultra-intense laser pulses (Nature Photonics, 10 Jan 2010).


Figure 1: Two ultra-intense laser pulses (in red) are tightly focused antiparallel to a probe beam (in green). The vacuum current, activated in the interaction regions of the probe and the strong laser fields, generates photons which interfere to produce a diffraction pattern (blue background) with the alternating maxima and minima typical of double-slit experiments.
Photo: MPIK

Double-slits provide incoming particles with a choice. Those that survive the passage have chosen from two possible paths which interfere to distribute them in a wave-like manner. Such wave-particle duality continues to be challenged and investigated in a broad range of disciplines with electrons, neutrons and also biological molecules. All variants of the double-slit experiment have hitherto involved material constituents.

On a seemingly different side, according to quantum electrodynamics virtual electron-positron pairs spontaneously pop into and out of existence in vacuum, on a time scale too short to be directly probed. However, the polarisation of these pairs under an applied electromagnetic field is predicted to support a rich variety of non-linear quantum processes. When driven by a strong electromagnetic field, the virtual electron-positron pairs generate a polarisation and magnetisation in the vacuum and one can form the useful analogy of the polarised quantum vacuum as a solid with non-linear response, which, instead of comprising tangible dipoles, hosts transient polarised virtual particle-antiparticle pairs. Taking the solid-state paradigm one step further, using an ultra-intense laser split into two beams, a nonlinear double-slit can be "activated" by polarising two slit-like regions in the vacuum.

Calculations performed at the Max-Planck-Institute for Nuclear Physics show that when these regions are probed with a second, counter-propagating laser field, one can create the conditions for a real photon-photon double-slit experiment, i. e. a truly quantum double-slit set-up comprising exclusively light. The researchers have simulated the collision of two ultra-intense optical laser beams with a counter-propagating probe field by including the presence of the virtual electrons and positrons in the interaction region. These virtual particles allow the strong fields to scatter the photons of the probe. The scattered photons distribute themselves in a pattern of alternating maxima and minima characteristic of double-slit experiments (Figure 1). This scenario presents on the one hand a realisable method to observe for the first time photon-photon scattering between real photons, and demonstrates on the other, the possibility of both controlling light with light as well as investigating the structure of the quantum vacuum.

Contact:

Dr. Antonino Di Piazza
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-171
E-Mail: dipiazza@mpi-hd.mpg.de
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Gesellschaft
Further information:
http://www.mpi-hd.mpg.de/keitel/
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2009.261.html

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>