Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matterless double-slit

11.01.2010
According to the foundations of quantum mechanics, two different given paths for quantum particles may interfere. Such a so-called "double-slit" scenario is put forward devoid of material constituents, consisting instead entirely of light.

This employs the equally fundamental concept of the structure of quantum vacuum, which mediates between incoming photons from a probe laser and the double-slit formed from two ultra-intense laser pulses (Nature Photonics, 10 Jan 2010).


Figure 1: Two ultra-intense laser pulses (in red) are tightly focused antiparallel to a probe beam (in green). The vacuum current, activated in the interaction regions of the probe and the strong laser fields, generates photons which interfere to produce a diffraction pattern (blue background) with the alternating maxima and minima typical of double-slit experiments.
Photo: MPIK

Double-slits provide incoming particles with a choice. Those that survive the passage have chosen from two possible paths which interfere to distribute them in a wave-like manner. Such wave-particle duality continues to be challenged and investigated in a broad range of disciplines with electrons, neutrons and also biological molecules. All variants of the double-slit experiment have hitherto involved material constituents.

On a seemingly different side, according to quantum electrodynamics virtual electron-positron pairs spontaneously pop into and out of existence in vacuum, on a time scale too short to be directly probed. However, the polarisation of these pairs under an applied electromagnetic field is predicted to support a rich variety of non-linear quantum processes. When driven by a strong electromagnetic field, the virtual electron-positron pairs generate a polarisation and magnetisation in the vacuum and one can form the useful analogy of the polarised quantum vacuum as a solid with non-linear response, which, instead of comprising tangible dipoles, hosts transient polarised virtual particle-antiparticle pairs. Taking the solid-state paradigm one step further, using an ultra-intense laser split into two beams, a nonlinear double-slit can be "activated" by polarising two slit-like regions in the vacuum.

Calculations performed at the Max-Planck-Institute for Nuclear Physics show that when these regions are probed with a second, counter-propagating laser field, one can create the conditions for a real photon-photon double-slit experiment, i. e. a truly quantum double-slit set-up comprising exclusively light. The researchers have simulated the collision of two ultra-intense optical laser beams with a counter-propagating probe field by including the presence of the virtual electrons and positrons in the interaction region. These virtual particles allow the strong fields to scatter the photons of the probe. The scattered photons distribute themselves in a pattern of alternating maxima and minima characteristic of double-slit experiments (Figure 1). This scenario presents on the one hand a realisable method to observe for the first time photon-photon scattering between real photons, and demonstrates on the other, the possibility of both controlling light with light as well as investigating the structure of the quantum vacuum.

Contact:

Dr. Antonino Di Piazza
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-171
E-Mail: dipiazza@mpi-hd.mpg.de
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Gesellschaft
Further information:
http://www.mpi-hd.mpg.de/keitel/
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2009.261.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>