Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A mathematical equation that explains the behavior of nanofoams


A research study, participated in by Universidad Carlos III de Madrid (UC3M), has discovered that nanometric-size foam structures follow the same universal laws as does soap lather: small bubbles disappear in favor of the larger ones.

The scientific team, made up of researchers from the Consejo Superior de Investigaciones Científicas (Spanish National Research Council) - CSIC, the Universidad Pontificia Comillas de Madrid- UPCO, and UC3M, reached this conclusion after producing and characterizing nanofoam formed by ion radiation on a silicon surface. This study, recently published in the journal, Physical Review Letters, describes the evolution of these nanostructures during the time of irradiation.

For this purpose, the scientists carried out an experiment that consisted in “bombardment” of a small silicon plate with energetic particles from a plasma. The objective was to observe how the surface of this crystal reacted to these different “attacks” from this type of ion radiation (ions are used: atoms of a gas that have lost an electron).

“At the outset, we were studying other methods of erosion and looking for a rippled structure at the edge of our sample after applying this technique, but when we looked at its center we observed a cellular structure that got our attention because of its similarity to many other natural and artificial systems,” one of the authors of the study, Mario Castro, UPCO Professor, revealed.

Cellular structures that are more or less disordered can be found in many natural systems: from the hides of animals, such as a giraffe, to bath froth or beer foam, to microscopic fluid convection, basalt column landscapes or diverse crystalline materials. This particular order is also evident in artificial structures and even political ones, such as modern architecture or demarcation of provinces on maps.

“It is of interest to confirm that the same universal laws which regulate the cellular structures in other systems are also regulating at the nanoscale,” Rodolfo Cuerno from the UC3M Mathematics Department noted.

“Furthermore,” he added “it is the first time that the evolution of a system of this kind is reproduced quite well by a single differential equation,” which also is applied to other systems. The validity of the model in this study means that the formation of certain self-organized patterns and the dynamics of the foam would be different manifestations of a same principle.

“The results of this study help us to understand how certain material systems evolve in the presence of an external agent, as in this case of ion radiation. In addition, there exists interest of a practical nature because of the importance of the technological applications of silicon as well as for the nanometric dimensions in which the phenomenon unfolds,” explained Luis Vázquez, from the Instituto de Ciencia de Materiales (Materials Science Institute) de Madrid at the CSIC.

The experimental observations have been carried out using an atomic force microscope, a machine with great precision. This type of microscope has enormous spatial resolution: it distinguishes variations in height up to a nanometer (the millionth part of a millimeter) and movements on a horizontal plane of up to 10 nanometers.

This research could have further future applications, since in general, methods are being sought to produce structures with nanometric dimensions for diverse uses, according to the scientists: for example, in order to obtain favorable conditions in certain catalytic chemical reactions, to optimize displacement of fluids in circuits on such small scale or in optoelectronics, to generate laser light if certain structures are sufficiently ordered.

Further information:

Pattern-Wavelength Coarsening from Topological Dynamics in Silicon Nanofoams
M. Castro, R. Cuerno, M. M. García-Hernández y L. Vázquez
Physical Review Letters 112, 094103. Published March 7, 2014.
DOI: 10.1103/PhysRevLett.112.094103
UC3M e-Archivo:

OIC | EurekAlert!
Further information:

Further reports about: CSIC Nanofoams UC3M artificial foam nanostructures structure structures

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>