Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Major Step Forward in Explaining the Ribbon in Space Discovered by NASA’s IBEX Mission

06.02.2013
The vast edges of our solar system – the boundary at the edge of our heliosphere where material streaming out from the sun interacts with the galactic material – is essentially invisible. It emits no light and no conventional telescope can see it.

However, particles from inside the solar system bounce off this boundary and neutral atoms from that collision stream inward. Those particles can be observed by instruments on NASA’s Interstellar Boundary Explorer (IBEX). Since those atoms act as fingerprints for the boundary from which they came, IBEX can map that boundary in a way never before done.


In 2009, NASA's Interstellar Boundary Explorer (IBEX) mission science team constructed the first-ever all-sky map of the interactions occurring at the edge of the solar system, where the sun's influence diminishes and interacts with the interstellar medium. A 2013 paper provides a new explanation for a giant ribbon of energetic neutral atoms – shown here in light green and blue -- streaming in from that boundary. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

In 2009, IBEX saw something in that map that no one could explain: a vast ribbon dancing across this boundary that produced many more energetic neutral atoms than the surrounding areas.

Scientists did not know what processes at the edge of the solar system could cause this mysterious increase in neutral atoms, or why any part of the boundary should be different from any other. In the years since, scientists have devised models and theories to try to explain the ribbon and now, building on earlier interpretations scientists have added a new hypothesis to help solve this puzzle.

In a paper published in the Astrophysical Journal, researchers propose a “retention theory” that for the first time explains the key observation of the unexplained ribbon’s width. The paper appeared online on Feb. 4, 2013.

Indeed, since the discovery of the ribbon, over a dozen competing theories seeking to explain the phenomenon have been put forth. The new theory builds on one that was first published along with the discovery of the ribbon in 2009 and then quantitatively simulated in 2010. This theory posited that the ribbon exists in a special location where neutral hydrogen atoms from the solar wind cross the local galactic magnetic field. Neutral atoms are not affected by magnetic fields, but when their electrons get stripped away they become charged ions and begin to gyrate rapidly around magnetic field lines. This process frequently aims ions back toward the sun. So those ions that pick up electrons at the right time might explain the extra boost of neutral atoms that create the ribbon. The problems were that physical processes might break down the distribution needed for it to work and that models based on this process showed a ribbon narrower than IBEX observed.

The new theory adds a key process: That rapid rotation creates waves or vibrations in the magnetic field, and the charged ions then become physically trapped in a region by these waves, which in turn would amplify the ion density and produce the broader ribbon seen.

"Think of the ribbon as a harbor and the solar wind particles it contains as boats," says Nathan Schwadron, the first author on the paper and scientist at The University of New Hampshire, Durham. “The boats can be trapped in the harbor if the ocean waves outside it are powerful enough. This is the nature of the new ribbon model. The ribbon is a region where particles, originally from the solar wind, become trapped or retained due to intense waves and vibrations in the magnetic field."

Models done with these waves taken into account agree with the available observations, and the mathematical modeling results look remarkably like what the ribbon actually looks like, says Schwadron.

“This is a perfect example of the scientific process," says David McComas, who is the other author on the paper and the principal investigator for the IBEX mission at the Southwest Research Institute in San Antonio, Texas. "We observe something completely new and unexpected with IBEX, develop various hypotheses to explain the observations, and then develop mathematical models to try to validate the hypotheses.”

Although the retention theory may check all the boxes, the IBEX team is still far from claiming that the ribbon is fully explained. A major test for the retention theory will be watching how the ribbon changes in step with observed changes in the solar wind.

"What we are learning with IBEX is that the interaction between the sun's magnetic fields and the galactic magnetic field is much more complicated than we previously thought," says Eric Christian, the mission scientist for IBEX at NASA's Goddard Space Flight Center in Greenbelt, Md. "By modifying an earlier model, this paper provides the best explanation so far for the ribbon IBEX is seeing."

If the theory is correct, points out Schwadron, it will help us understand more about how our heliosphere interacts with the rest of the universe. “The ribbon can be used to tell us how we’re moving through the magnetic fields of the interstellar medium and how those magnetic fields then influence our space environment,” he says.

IBEX is the latest in NASA’s series of low-cost, rapidly developed Small Explorer space missions. Southwest Research Institute in San Antonio, TX leads the IBEX mission with teams of national and international partners. NASA’s Goddard Space Flight Center in Greenbelt, Md. manages the Explorers Program for the Heliophysics Division of NASA’s Science Mission Directorate in Washington, D.C.

For more information about the IBEX mission, go to:
› http://www.nasa.gov/ibex
Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, MD

Karen C. Fox | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/ibex
http://www.nasa.gov/mission_pages/ibex/news/ribbon-explained.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>