Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using a laser to 'see' the smallest world

20.09.2012
Scientists employ a powerful UCSB laser to breathe new life into an old technology for studying atomic-level structures

A multi-university team has employed a high-powered laser based at UC Santa Barbara to dramatically improve one of the tools scientists use to study the world at the atomic level. The team used their amped-up electron paramagnetic resonance (EPR) spectrometer to study the electron spin of free radicals and nitrogen atoms trapped inside a diamond.

The improvement will pull back the veil that shrouds the molecular world, allowing scientists to study tiny molecules at a high resolution.

The team, which includes researchers from UCSB, University of Southern California (USC), and Florida State University, published its findings this week in Nature.

"We developed the world's first free-electron laser-powered EPR spectrometer," said Susumu Takahashi, assistant professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences, and lead author of the Nature paper. "This ultra high-frequency, high-power EPR system gives us extremely good time resolution. For example, it enables us to film biological molecules in motion."

By using a high-powered laser, the researchers were able to significantly enhance EPR spectroscopy, which uses electromagnetic radiation and magnetic fields to excite electrons. These excited electrons emit electromagnetic radiation that reveals details about the structure of the targeted molecules.

EPR spectroscopy has existed for decades. Its limiting factor is the electromagnetic radiation source used to excite the electrons –– it becomes more powerful at high magnetic fields and frequencies, and, when targeted, electrons are excited with pulses of power as opposed to continuous waves.

Until now, scientists performed pulsed EPR spectroscopy with a few tens of GHz of electromagnetic radiation. Using UCSB's free electron laser (FEL), which emits a pulsed beam of electromagnetic radiation, the team was able to use 240 GHz of electromagnetic radiation to power an EPR spectrometer.
"Each electron can be thought of as a tiny magnet that senses the magnetic fields caused by atoms in its nano-neighborhood," said Mark Sherwin, professor of physics and director of the Institute for Terahertz Science and Technology at UCSB. "With FEL-powered EPR, we have shattered the electromagnetic bottleneck that EPR has faced, enabling electrons to report on faster motions occurring over longer distances than ever before. We look forward to breakthrough science that will lay foundations for discoveries like new drugs and more efficient plastic solar cells."

The research was funded by the National Science Foundation and the W. M. Keck Foundation.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>