Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A New Kind of Cosmic Glitch

Astronomers led by McGill research group discover new phenomenon in neutron star

Newswise — The physics behind some of the most extraordinary stellar objects in the Universe just became even more puzzling.

ESA/XMM-Newton/M. Sasaki et al.

The magnetar 1E 2259+586 shines a brilliant blue-white in this false-colour X-ray image of the CTB 109 supernova remnant, which lies about 10,000 light-years away toward the constellation Cassiopeia. CTB 109 is only one of three supernova remnants in our galaxy known to harbour a magnetar. X-rays at low, medium and high energies are respectively shown in red, green, and blue in this image created from observations acquired by the European Space Agency's XMM-Newton satellite in 2002. Credit: ESA/XMM-Newton/M. Sasaki et al.

A group of astronomers led by McGill researchers using NASA's Swift satellite have discovered a new kind of glitch in the cosmos, specifically in the rotation of a neutron star.

Neutron stars are among the densest objects in the observable universe; higher densities are found only in their close cousins, black holes. A typical neutron star packs as much mass as half-a-million Earths within a diameter of only about 20 kilometers. A teaspoonful of neutron star matter would weigh approximately 1 billion tons, roughly the same as 100 skyscrapers made of solid lead.

Neutron stars are known to rotate very rapidly, from a few revolutions per minute to as fast as several hundred times per second. A neutron star glitch is an event in which the star suddenly begins rotating faster. These sudden spin-up glitches have long been thought to demonstrate that these exotic ultra-dense stellar objects contain some form of liquid, likely a superfluid.

This new cosmic glitch was detected in a special kind of neutron star – a magnetar -- an ultra-magnetized neutron star that can exhibit dramatic outbursts of X-rays, sometimes so strong they can affect the Earth's atmosphere from clear across the galaxy. A magnetar’s magnetic field is so strong that, if one were located at the distance of the Moon, it could wipe clean a credit card magnetic strip here on Earth.

Now astronomers led by a research group at McGill University have discovered a new phenomenon: they observed a magnetar suddenly rotate slower -- a cosmic braking act they've dubbed an “anti-glitch.” The result is reported in the May 30 issue of Nature.

The magnetar in question, 1E 2259+586 located roughly 10,000 light years away in the constellation of Cassiopeia, was being monitored by the McGill group using the Swift X-ray telescope in order to study the star's rotation and try to detect the occasional giant X-ray explosions that are often seen from magnetars.

"I looked at the data and was shocked -- the neutron star had suddenly slowed down," says Rob Archibald, lead author and MSc student at McGill University. "These stars are not supposed to behave this way."

Accompanying the sudden slowdown, which rang in at one third of a part per million of the 7-second rotation rate, was a large increase in the X-ray output of the magnetar, telltale evidence of a major event inside or near the surface of the neutron star.

"We've seen huge X-ray explosions from magnetars before," says Victoria Kaspi, Professor of Physics at McGill and leader of the Swift magnetar monitoring program, "but an anti-glitch was quite a surprise. This is telling us something brand new about the insides of these amazing objects." In 2002, NASA’s Rossi X-ray Timing Explorer satellite also saw a large X-ray outburst from the source, but in that case, it was accompanied by a more usual spin-up glitch.

The internal structure of neutron stars is a long-standing puzzle, as the matter inside these stars is subject to forces so intense that they are presently not re-creatable in terrestrial laboratories. The densities at the hearts of neutron stars are thought to be upwards of 10 times higher than in the atomic nucleus, far beyond what current theories of matter can describe.

The reported anti-glitch strongly suggests previously unrecognized behaviour inside neutron stars, possibly with pockets of superfluid rotating at different speeds. The researchers further point out in the Nature paper that some properties of conventional glitches have been noted to be puzzling and suggestive of flaws in the existing theory to explain them. They are hoping that the discovery of a new phenomenon will open the door to renewed progress in understanding neutron star interiors.

The research was funded in part by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advance Research, the Fonds de recherche du Québec - Nature et technologies, the Canada Research Chairs program, the Lorne Trottier Chair in Astrophysics and Cosmology, and the Centre de recherche en Astrophysique du Québec.

Chris Chipello
Media Relations
McGill University
Cynthia Lee
Media Relations
McGill University

Chris Chipello | Newswise
Further information:

Further reports about: Cosmic Glitch Nature Immunology black hole neutron star

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>