Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Kind of Cosmic Glitch

31.05.2013
Astronomers led by McGill research group discover new phenomenon in neutron star

Newswise — The physics behind some of the most extraordinary stellar objects in the Universe just became even more puzzling.


ESA/XMM-Newton/M. Sasaki et al.

The magnetar 1E 2259+586 shines a brilliant blue-white in this false-colour X-ray image of the CTB 109 supernova remnant, which lies about 10,000 light-years away toward the constellation Cassiopeia. CTB 109 is only one of three supernova remnants in our galaxy known to harbour a magnetar. X-rays at low, medium and high energies are respectively shown in red, green, and blue in this image created from observations acquired by the European Space Agency's XMM-Newton satellite in 2002. Credit: ESA/XMM-Newton/M. Sasaki et al.

A group of astronomers led by McGill researchers using NASA's Swift satellite have discovered a new kind of glitch in the cosmos, specifically in the rotation of a neutron star.

Neutron stars are among the densest objects in the observable universe; higher densities are found only in their close cousins, black holes. A typical neutron star packs as much mass as half-a-million Earths within a diameter of only about 20 kilometers. A teaspoonful of neutron star matter would weigh approximately 1 billion tons, roughly the same as 100 skyscrapers made of solid lead.

Neutron stars are known to rotate very rapidly, from a few revolutions per minute to as fast as several hundred times per second. A neutron star glitch is an event in which the star suddenly begins rotating faster. These sudden spin-up glitches have long been thought to demonstrate that these exotic ultra-dense stellar objects contain some form of liquid, likely a superfluid.

This new cosmic glitch was detected in a special kind of neutron star – a magnetar -- an ultra-magnetized neutron star that can exhibit dramatic outbursts of X-rays, sometimes so strong they can affect the Earth's atmosphere from clear across the galaxy. A magnetar’s magnetic field is so strong that, if one were located at the distance of the Moon, it could wipe clean a credit card magnetic strip here on Earth.

Now astronomers led by a research group at McGill University have discovered a new phenomenon: they observed a magnetar suddenly rotate slower -- a cosmic braking act they've dubbed an “anti-glitch.” The result is reported in the May 30 issue of Nature.

The magnetar in question, 1E 2259+586 located roughly 10,000 light years away in the constellation of Cassiopeia, was being monitored by the McGill group using the Swift X-ray telescope in order to study the star's rotation and try to detect the occasional giant X-ray explosions that are often seen from magnetars.

"I looked at the data and was shocked -- the neutron star had suddenly slowed down," says Rob Archibald, lead author and MSc student at McGill University. "These stars are not supposed to behave this way."

Accompanying the sudden slowdown, which rang in at one third of a part per million of the 7-second rotation rate, was a large increase in the X-ray output of the magnetar, telltale evidence of a major event inside or near the surface of the neutron star.

"We've seen huge X-ray explosions from magnetars before," says Victoria Kaspi, Professor of Physics at McGill and leader of the Swift magnetar monitoring program, "but an anti-glitch was quite a surprise. This is telling us something brand new about the insides of these amazing objects." In 2002, NASA’s Rossi X-ray Timing Explorer satellite also saw a large X-ray outburst from the source, but in that case, it was accompanied by a more usual spin-up glitch.

The internal structure of neutron stars is a long-standing puzzle, as the matter inside these stars is subject to forces so intense that they are presently not re-creatable in terrestrial laboratories. The densities at the hearts of neutron stars are thought to be upwards of 10 times higher than in the atomic nucleus, far beyond what current theories of matter can describe.

The reported anti-glitch strongly suggests previously unrecognized behaviour inside neutron stars, possibly with pockets of superfluid rotating at different speeds. The researchers further point out in the Nature paper that some properties of conventional glitches have been noted to be puzzling and suggestive of flaws in the existing theory to explain them. They are hoping that the discovery of a new phenomenon will open the door to renewed progress in understanding neutron star interiors.

The research was funded in part by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advance Research, the Fonds de recherche du Québec - Nature et technologies, the Canada Research Chairs program, the Lorne Trottier Chair in Astrophysics and Cosmology, and the Centre de recherche en Astrophysique du Québec.

Chris Chipello
Media Relations
McGill University
514.398.4201
christopher.chipello@mcgill.ca
Cynthia Lee
Media Relations
McGill University
514.398.6754
cynthia.lee@mcgill.ca

Chris Chipello | Newswise
Further information:
http://www.mcgill.ca

Further reports about: Cosmic Glitch Nature Immunology black hole neutron star

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>