Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Kind of Cosmic Glitch

31.05.2013
Astronomers led by McGill research group discover new phenomenon in neutron star

Newswise — The physics behind some of the most extraordinary stellar objects in the Universe just became even more puzzling.


ESA/XMM-Newton/M. Sasaki et al.

The magnetar 1E 2259+586 shines a brilliant blue-white in this false-colour X-ray image of the CTB 109 supernova remnant, which lies about 10,000 light-years away toward the constellation Cassiopeia. CTB 109 is only one of three supernova remnants in our galaxy known to harbour a magnetar. X-rays at low, medium and high energies are respectively shown in red, green, and blue in this image created from observations acquired by the European Space Agency's XMM-Newton satellite in 2002. Credit: ESA/XMM-Newton/M. Sasaki et al.

A group of astronomers led by McGill researchers using NASA's Swift satellite have discovered a new kind of glitch in the cosmos, specifically in the rotation of a neutron star.

Neutron stars are among the densest objects in the observable universe; higher densities are found only in their close cousins, black holes. A typical neutron star packs as much mass as half-a-million Earths within a diameter of only about 20 kilometers. A teaspoonful of neutron star matter would weigh approximately 1 billion tons, roughly the same as 100 skyscrapers made of solid lead.

Neutron stars are known to rotate very rapidly, from a few revolutions per minute to as fast as several hundred times per second. A neutron star glitch is an event in which the star suddenly begins rotating faster. These sudden spin-up glitches have long been thought to demonstrate that these exotic ultra-dense stellar objects contain some form of liquid, likely a superfluid.

This new cosmic glitch was detected in a special kind of neutron star – a magnetar -- an ultra-magnetized neutron star that can exhibit dramatic outbursts of X-rays, sometimes so strong they can affect the Earth's atmosphere from clear across the galaxy. A magnetar’s magnetic field is so strong that, if one were located at the distance of the Moon, it could wipe clean a credit card magnetic strip here on Earth.

Now astronomers led by a research group at McGill University have discovered a new phenomenon: they observed a magnetar suddenly rotate slower -- a cosmic braking act they've dubbed an “anti-glitch.” The result is reported in the May 30 issue of Nature.

The magnetar in question, 1E 2259+586 located roughly 10,000 light years away in the constellation of Cassiopeia, was being monitored by the McGill group using the Swift X-ray telescope in order to study the star's rotation and try to detect the occasional giant X-ray explosions that are often seen from magnetars.

"I looked at the data and was shocked -- the neutron star had suddenly slowed down," says Rob Archibald, lead author and MSc student at McGill University. "These stars are not supposed to behave this way."

Accompanying the sudden slowdown, which rang in at one third of a part per million of the 7-second rotation rate, was a large increase in the X-ray output of the magnetar, telltale evidence of a major event inside or near the surface of the neutron star.

"We've seen huge X-ray explosions from magnetars before," says Victoria Kaspi, Professor of Physics at McGill and leader of the Swift magnetar monitoring program, "but an anti-glitch was quite a surprise. This is telling us something brand new about the insides of these amazing objects." In 2002, NASA’s Rossi X-ray Timing Explorer satellite also saw a large X-ray outburst from the source, but in that case, it was accompanied by a more usual spin-up glitch.

The internal structure of neutron stars is a long-standing puzzle, as the matter inside these stars is subject to forces so intense that they are presently not re-creatable in terrestrial laboratories. The densities at the hearts of neutron stars are thought to be upwards of 10 times higher than in the atomic nucleus, far beyond what current theories of matter can describe.

The reported anti-glitch strongly suggests previously unrecognized behaviour inside neutron stars, possibly with pockets of superfluid rotating at different speeds. The researchers further point out in the Nature paper that some properties of conventional glitches have been noted to be puzzling and suggestive of flaws in the existing theory to explain them. They are hoping that the discovery of a new phenomenon will open the door to renewed progress in understanding neutron star interiors.

The research was funded in part by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advance Research, the Fonds de recherche du Québec - Nature et technologies, the Canada Research Chairs program, the Lorne Trottier Chair in Astrophysics and Cosmology, and the Centre de recherche en Astrophysique du Québec.

Chris Chipello
Media Relations
McGill University
514.398.4201
christopher.chipello@mcgill.ca
Cynthia Lee
Media Relations
McGill University
514.398.6754
cynthia.lee@mcgill.ca

Chris Chipello | Newswise
Further information:
http://www.mcgill.ca

Further reports about: Cosmic Glitch Nature Immunology black hole neutron star

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>