Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Hidden Population of Exotic Neutron Stars

24.05.2013
Magnetars – the dense remains of dead stars that erupt sporadically with bursts of high-energy radiation - are some of the most extreme objects known in the Universe.

A major campaign using NASA's Chandra X-ray Observatory and several other satellites shows magnetars may be more diverse - and common - than previously thought.


Credit: X-ray: NASA/CXC/CSIC-IEEC/N.Rea et al; Optical: Isaac Newton Group of Telescopes, La Palma/WHT; Infrared: NASA/JPL-Caltech; Illustration: NASA/CXC/M.Weiss

When a massive star runs out of fuel, its core collapses to form a neutron star, an ultradense object about 10 to 15 miles wide. The gravitational energy released in this process blows the outer layers away in a supernova explosion and leaves the neutron star behind.

Most neutron stars are spinning rapidly - a few times a second - but a small fraction have a relatively low spin rate of once every few seconds, while generating occasional large blasts of X-rays. Because the only plausible source for the energy emitted in these outbursts is the magnetic energy stored in the star, these objects are called "magnetars."

Most magnetars have extremely high magnetic fields on their surface that are ten to a thousand times stronger than for the average neutron star. New observations show that the magnetar known as SGR 0418+5729 (SGR 0418 for short) doesn’t fit that pattern. It has a surface magnetic field similar to that of mainstream neutron stars.

"We have found that SGR 0418 has a much lower surface magnetic field than any other magnetar," said Nanda Rea of the Institute of Space Science in Barcelona, Spain. "This has important consequences for how we think neutron stars evolve in time, and for our understanding of supernova explosions."

The researchers monitored SGR 0418 for over three years using Chandra, ESA's XMM-Newton as well as NASA's Swift and RXTE satellites. They were able to make an accurate estimate of the strength of the external magnetic field by measuring how its rotation speed changes during an X-ray outburst. These outbursts are likely caused by fractures in the crust of the neutron star precipitated by the buildup of stress in a relatively strong, wound-up magnetic field lurking just beneath the surface.

"This low surface magnetic field makes this object an anomaly among anomalies," said co-author GianLuca Israel of the National Institute of Astrophysics in Rome. "A magnetar is different from typical neutron stars, but SGR 0418 is different from other magnetars as well."

By modeling the evolution of the cooling of the neutron star and its crust, as well as the gradual decay of its magnetic field, the researchers estimated that SGR 0418 is about 550,000 years old. This makes SGR 0418 older than most other magnetars, and this extended lifetime has probably allowed the surface magnetic field strength to decline over time. Because the crust weakened and the interior magnetic field is relatively strong, outbursts could still occur.

The case of SGR 0418 may mean that there are many more elderly magnetars with strong magnetic fields hidden under the surface, implying that their birth rate is five to ten times higher than previously thought.

"We think that about once a year in every galaxy a quiet neutron star should turn on with magnetar-like outbursts, according to our model for SGR 0418," said Josè Pons of the University of Alacant in Spain. "We hope to find many more of these objects."

Another implication of the model is that the surface magnetic field of SGR 0418 should have once been very strong at its birth a half million years ago. This, plus a possibly large population of similar objects, could mean that the massive progenitor stars already had strong magnetic fields, or these fields were created by rapidly rotating neutron stars in the core collapse that was part of the supernova event.

If large numbers of neutron stars are born with strong magnetic fields then a significant fraction of gamma-ray bursts might be caused by the formation of magnetars rather than black holes. Also, the contribution of magnetar births to gravitational wave signals – ripples in space-time – would be larger than previously thought.

The possibility of a relatively low surface magnetic field for SGR 0418 was first announced in 2010 by a team with some of the same members. However, the scientists at that time could only determine an upper limit for the magnetic field and not an actual estimate because not enough data had been collected.

SGR 0418 is located in the Milky Way galaxy at a distance of about 6,500 light years from Earth. These new results on SGR 0418 appear online and will be published in the June 10, 2013 issue of The Astrophysical Journal. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

For Chandra images, multimedia and related materials, visit:
http://www.nasa.gov/chandra
For an additional interactive image, podcast, and video on the finding, visit:
http://chandra.si.edu
Media contacts:
Janet Anderson
NASA Marshall Space Flight Center, Ala.
256-544-6162
janet.l.anderson@nasa.gov
Megan Watzke
Chandra X-ray Center, Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

Megan Watzke | EurekAlert!
Further information:
http://www.nasa.gov
http://www.chandra.harvard.edu/press/13_releases/press_052313.html

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>