Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A heavyweight for Einstein

26.04.2013
An international team led by astronomers from MPIfR (Bonn, Germany) used a collection of large telescopes to investigate PSR J0348+0432, a newly discovered pulsar, and its white dwarf companion.

Weighing twice as much as the Sun, it is the most massive neutron star measured to date. Together with a short orbital period of only 2.5 hours, the system provides insight into binary stellar evolution and the emission of gravitational radiation.


An artist’s impression of the PSR J0348+0432 binary system. The pulsar (with radio beams) is extremely compact, leading to a strong distortion of space-time (illustrated by the green mesh). The white-dwarf companion is shown in light-blue.
Science / J. Antoniadis (MPIfR)

The energy loss through this radiation has already been detected in the radio observations of the pulsar, making it a laboratory for General Relativity in extreme conditions. The findings are in excellent agreement with Einstein's theory.

Imagine half a million Earths packed into a sphere 20 kilometers in diameter, spinning faster than an industrial kitchen blender. These extreme conditions, almost unimaginable by human standards, are met in a neutron star – a type of stellar remnant formed in the aftermath of a supernova explosion. Neutron stars often catch the attention of astronomers because they offer the opportunity to test physics under unique conditions. They were first discovered almost half a century ago as pulsars which emit radio pulses like a lighthouse. Pulsar research has been honored with two Nobel prizes, one for their discovery (1974) and one for the first indirect detection of gravitational waves (1993) – a consequence of Einstein’s theory of General Relativity.

PSR J0348+0432 is a pulsar in orbit with a white-dwarf, recently discovered using the Green-Bank radio telescope in an ongoing global effort to find more of these exciting pulsars. With a separation of just 830,000 km, the pulsar and the white dwarf in this system are close enough to emit a significant amount of gravitational waves. This should make the orbital size and period shrink, as predicted by General Relativity. To verify this prediction, one needs to know both the mass of the pulsar and its companion.

“I was observing the system with ESO’s Very Large Telescope in Chile, trying to detect changes in the light emitted from the white dwarf caused by its two million km/h motion around the pulsar.” says John Antoniadis, IMPRS student at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn and leading author of the paper. “This allows us to weigh both, the white dwarf and the pulsar. After a quick on-the-spot analysis I realized that the pulsar was quite a heavyweight: a mass twice that of the Sun, making it the most massive neutron star we know of.”

With these masses at hand, one can calculate the amount of energy taken away from the system by gravitational waves, causing the orbital period to shrink. The team immediately realized that this change in the orbital period should be visible in the radio signals of the pulsar and turned its full attention to PSR J0348+0432, using the three largest single-dish radio telescopes on Earth (Fig. 2). “Our radio observations with the Effelsberg and Arecibo telescopes were so precise that by the end of 2012 we could already measure a change in the orbital period of 8 microseconds per year, exactly what Einstein’s theory predicts”, states Paulo Freire, scientist at MPIfR. “Such measurements are so important that the European Research Council has recently funded BEACON, a new state-of-the-art system for the Effelsberg radio telescope.”

In terms of gravity, PSR J0348+0432 is a truly extreme object, even compared to other pulsars which have been used in high precision tests of Einstein’s general relativity. At its surface, for example, it has a gravitational strength that is more than 300 billion times stronger than that on Earth. In the center of that pulsar, more than one billion tons of matter is squeezed into a volume of a sugar cube. These numbers nearly double the ones found in other ‘pulsar gravity labs’. In the language of general relativity, astronomers were able for the first time to precisely investigate the motion of an object with such a strong space-time curvature (see Fig. 1). “The most exciting result for us was, that general relativity still holds true for such an extreme object”, says Norbert Wex, a theoretical astrophysicist in MPIfR’s fundamental physics research group. In fact, there are alternative theories that make different predictions, and therefore are now ruled out. In this sense, PSR J0348+0432 is taking our understanding of gravity even beyond the famous ‘Double Pulsar’, J0737-3039A/B, which was voted as one of the top ten scientific breakthroughs of 2004 by the ‘Science’ journal.

“Such extreme physical conditions are impossible to replicate in laboratories on Earth,” says Thomas Tauris, a member of the Stellar Physics group at the Argelander-Institut für Astronomie of Bonn University. “We would certainly like to learn how nature built such systems for us. For the J0348+0432 system, however, our formation theories are stretched to the limit. The system has a peculiar combination of properties: the tight orbital period and the pulsar’s high mass, relatively slow rotation and strong magnetic field. It therefore poses an interesting challenge to the understanding of binary evolution.”
Last but not least, these findings are also important for scientists who search for gravitational waves. On Earth, they are using large detectors, like the laser interferometers GEO600, LIGO and VIRGO. One of the key signals they are looking for in their data are the gravitational waves emitted by two neutron stars during those last few minutes when they quickly spiral towards each other and finally collide. Decades of mathematical research in general relativity were necessary to calculate the expected gravitational waves from such a collision. Those equations are needed to identify them in the detectors’ recordings. The first such identification is expected within the next five years. “Our results on J0348+0432 provide added confidence in these equations for the whole range of neutron star masses observed in nature”, says Michael Kramer, director at MPIfR and head of its fundamental physics research group. “Given the great effort involved in deriving these equations, Einstein’s theory passing this test is good news for our colleagues in gravitational wave astronomy.”

The Telescopes: ESO’s Very Large Telescope (VLT) in Chile was used to measure the masses of both, the pulsar and the white dwarf. The William-Herschel Telescope (WHT) on La Palma was used to monitor the stability of the white dwarf. The Green-Bank telescope (GBT) discovered the pulsar in 2007. The Arecibo and Effelsberg telescopes were used to measure the orbital period variation of the system.

BEACON: The Effelsberg observations were part of "BEACON", a 1.9-million-Euro project funded by the European Research Council aimed to push tests of gravity theories into new territories. Paulo Freire/MPIfR is the principal investigator of BEACON. The project has funded a state-of-the-art instrument to be installed at Effelsberg in the coming months that will target the pulsar with the aim to substantially improve the accuracy of the published results.

Original Publication:

Results are published as “A massive pulsar in a compact relativistic binary” (J. Antoniadis, P. Freire, N. Wex, T. Tauris, R. Lynch, M. Kerkwijk, M. Kramer, C. Bassa, V. Dhillon, T. Driebe, J. Hessels, V. Kaspi, V. Kondratiev, N. Langer, T. Marsh, M. McLaughlin, T. Pennucci, S. Ransom, I. Stairs, J. van Leeuwen, J. Verbiest, D. Whelan), in the current issue of “Science” (April 26, 2013), DOI 10.1126/science.1233232.
Additional Information:

Max-Planck-Institut für Radioastronomie: http://www.mpifr-bonn.mpg.de/

Fundamental Physics in Radio Astronomy: http://www3.mpifr-bonn.mpg.de/div/fundamental/

IMPRS: http://www.mpifr-bonn.mpg.de/de/imprs

ERC BEACON Grant: http://www.mpifr-bonn.mpg.de/staff/pfreire/BEACON.html

Stellar Physics Group, Argelander Institut für Astronomie, Bonn University:
http://www.astro.uni-bonn.de/stars/

European Pulsar Network: http://www.jb.man.ac.uk/research/pulsar/Resources/epn/

Effelsberg Telescope: http://www.mpifr-bonn.mpg.de/8964/effelsberg

VLT/ESO: https://www.eso.org/public/teles-instr/vlt.html

GBT: https://science.nrao.edu/facilities/gbt/

Arecibo Observatory: http://www.naic.edu/index_scientific.php

WHT: http://www.ing.iac.es/Astronomy/telescopes/wht/

Animation of the pulsar system (ESO): http://www.eso.org/public/videos/eso1319a/

Contact:

John Antoniadis (en, gr),
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-181
E-mail: jantoniadis@mpifr-bonn.mpg.de
Prof. Dr. Michael Kramer (de, en),
Head of Research Group „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. Norbert Junkes (de, en)
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de
For specific requests:

Dr. Paulo Freire (Radio Observations) (en, pt, es, fr),
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-496
E-mail: pfreire@mpifr-bonn.mpg.de
Dr. Norbert Wex (General Relativity) (de, en),
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-503
E-mail: wex@mpifr-bonn.mpg.de

Dr. Thomas Tauris (Binary Evolution) (en, dk),
Argelander-Institut für Astronomie, Bonn University / MPIfR
Phone: +49-228-73-3660
E-mail: tauris@astro.uni-bonn.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>