Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A gassy mystery: Researchers discover surprising exoplanetary atmosphere

A Neptune-sized exoplanet orbiting a small star about 33 light years away could be a key stepping stone on the path to making sense of an Earth twin.

The finding is the latest advance in the quest to measure Earth-like planets that could possibly host signs of life, which researchers expect to find in the next few years.

"GJ 436b is the smallest exoplanet whose direct light we've been able to measure," said Kevin Stevenson, the University of Central Florida's first planetary sciences doctoral student and lead author of the study, which will be published Thursday, April 22, in Nature.

The results are surprising. Neptune-sized planets as hot as 800 Kelvin -- about 1,000 degrees Fahrenheit -- should contain high levels of methane and very little carbon monoxide, according to standard chemistry.

Instead, the researchers found 7,000 times less methane than expected and plenty of carbon monoxide, which suggests that scientists should be more flexible in their theories about the atmospheres of similar planets.

"This is unexpected," said UCF Physics Professor Joseph Harrington. "It's like dipping bread into beaten eggs, frying it and getting oatmeal." Stevenson and Harrington worked alongside colleagues from UCF, the Massachusetts Institute of Technology, Columbia University and NASA.

Using NASA's Spitzer Space Telescope, the UCF team measured the dimming of light as GJ 436b passed behind its star and re-emerged. The difference in the two light levels -- measured six times at different infrared wavelengths -- represents the light emitted by the planet itself.

The resulting data were used to figure out what molecules make up the planet's atmosphere. To do this, MIT Planetary Sciences Professor Sara Seager and postdoctoral researcher Nikku Madhusudhan simulated millions of chemical mixes under the planet's conditions to find the ones that best matched the UCF data.

The unexpected result puts GJ 436b in good company. "If you were looking at Earth from afar, you would be surprised to see oxygen gas in its atmosphere," Harrington said. "Oxygen reacts with surface materials and other gases, so you need something that continually produces it."

That something is Earth's abundant plant life. Oxygen is a "biosignature," or an indicator of life, Harrington says.

Using similar techniques to that of the UCF study, astronomers will seek oxygen and other biosignatures on habitable worlds that they soon expect to discover.

"We'll keep pushing the frontier, and this is just one more step in that direction," Stevenson said.

Christine Dellert | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>