Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Galaxy From The Universe’s Nursery

20.09.2012
The galaxy designated MACS1149-JD1 was created less than 500 million years after the Big Bang
An international team of researchers that includes astrophysicists of Heidelberg University has discovered a galaxy straight from the nursery of the universe. MACS1149-JD1 was created less than 500 million years after the Big Bang, making it the most remote galaxy ever to be observed. The discovery was made possible by a natural phenomenon known as “gravitational lens” that enhances the brightness of astronomical objects. The findings will be published in “Nature” on 20 September 2012.

Our universe came into being approx. 13.7 billion years ago with a Big Bang. 400 to 500 million years later, conditions in the cosmos allowed for the formation of the first stars. “There was almost no hope of ever receiving a signal from any object of this time period; if there already were galaxies back then, their brightness would be far weaker than the light of a candle on the moon. There’s no telescope on earth that would be able to discover such an object”, explains Prof. Dr. Matthias Bartelmann of Heidelberg University’s Centre for Astronomy (ZAH).

The natural luminosity enhancer that helped researchers discover the galaxy consists of dark matter, so called because it can only be perceived indirectly, e.g. by its light-attracting properties. Galaxy clusters in which hundreds or thousands of galaxies move in a relatively small space contain large amounts of dark matter. If such a galaxy cluster with its dark matter is located at a certain distance from Earth, it acts like a magnifying lens – it makes objects located behind it appear larger and brighter by bundling their light. It is this effect of the gravitational lens that led to the discovery of MACS1149-JD1.

“Galaxies going through an intensive phase of star formation show a certain distinctive and characteristic gradation in their spectral energy distribution. We can detect this gradation by observing a galaxy through a telescope with different filters“, states Dr. Adi Zitrin, who is part of Prof. Bartelmann’s work group. However, the gradation shifts in just as characteristic a manner depending on how far away the galaxy is. In the case of MACS1149-JD1 this shift, known as redshift, has a value of 9.6. According to the Heidelberg scientists, this puts the galaxy at a distance which light has covered within 13.2 billion years.

Essential clues that led to the discovery of MACS1149-JD1 were provided by a method of analysis also developed at the ZAH. This method has scientists measuring the distortion of the telescope images of galaxies located far behind the galaxy clusters, a distortion that is caused by the large amount of invisible dark matter in the clusters. In the case of MACS1149+22, the researchers detected a total of seven background galaxies whose image was enhanced, distorted and split into 23 multiple images by the gravitational effect of the galaxy cluster. This enabled the team to predict the location of a light-enhanced galaxy at a redshift of 9.6. The scientists concluded that the galaxy must have formed as early as 490 million years after the Big Bang.

At the heart of this research are images provided by the Hubble space telescope that has been closely observing certain galaxy clusters since 2010. Headed by Prof. Dr. Wei Zheng from Johns Hopkins University in Baltimore, USA, the project counts research teams from Chile, China, Denmark, Germany, Italy, the Netherlands, Spain, Taiwan, the UK and the U.S. among its contributors. In Germany, this project is supported by the Baden-Württemberg Stiftung.

Note for news desks:
Digital photos are available from the press office.

Original publication:
W. Zheng, M. Postman, A. Zitrin, J. Moustakas, X. Shu, S. Jouvel, O. Host, A. Molino, L. Bradley, D. Coe, L. A. Moustakas, M. Carrasco, H. Ford, N. Benitez, T. R. Lauer, S. Seitz, R. Bouwens, A. Koekemoer, E. Medezinski, M. Bartelmann, T. Broadhurst, M. Donahue, C. Grillo, L. Infante, S. W. Jha, D. D. Kelson, O. Lahav, D. Lemze, P. Melchior, M. Meneghetti, J. Merten, M. Nonino, S. Ogaz, P. Rosati, K. Umetsu, A. van der Wel: A highly magnified candidate for a young galaxy seen when the Universe was about 500 Myr old, Nature (20 September 2012), doi10.1038/nature11446

Contact:
Prof. Dr. Matthias Bartelmann, Dr. Adi Zitrin
Centre for Astronomy of Heidelberg University (ZAH)
Phone +49 (0) 6221 54-4817/-8987
bartelmann@uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 (0) 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>