Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A First-of-Its-Kind Discovery with an XFEL

08.12.2014

UWM team the first to “see” atomic changes in proteins with record resolution

A research team led by physicists at the University of Wisconsin-Milwaukee (UWM) has proven a method that makes it possible to find the atomic structure of proteins in action by producing “snapshots” of them with unprecedented spatial and temporal resolution.


Mathematically reconstructed "maps" show movement of electron clouds in the molecules of the protein. Red represents the location at one point in time and blue represents a different location a microsecond later.

What made it possible were the ultra-short X-ray pulses of a Free Electron Laser (XFEL).

Physics professor Marius Schmidt and doctoral student Jason Tenboer recently completed the experiment with the XFEL at the Stanford Linear Accelerator Center (SLAC) in California.

It confirms that the XFEL imaging method, called time-resolved serial femtosecond crystallography (TR-SFX), can unmask protein structures that have never been seen before, determine what each protein does and reveal how they work together to carry out nearly every function in a living organism.

The experiment also involved researchers from Arizona State University, SUNY Buffalo, University of Chicago, Imperial College London, Lawrence Livermore National Laboratory, Stanford Linear Accelerator Center, and the Deutsches Elektronen-Synchrotron (DESY). Results are published today in the journal Science.

Structure equals function
The successful test of the method they used has opened the door to discovering what Schmidt calls “some of the grand challenges of biology.” Proteins are behind almost everything that happens in a living organism, and they play a pivotal role not only in human health, but also in issues as diverse as food, drug discovery and energy.

“We want to understand the molecular basis of life,” he says.

But advances are only possible if scientists know what each protein does. For that, they have to know the structure – the arrangements of the atoms in each and how they change when proteins work together.

“We could observe reactions in certain proteins before,” says Schmidt, “but our new results show that we can now investigate reactions in almost all proteins.”

X-ray crystallography is the method of choice to image proteins with near atomic resolution: X-rays are shot at a protein crystal and diffract off in many directions, creating a pattern of dots the way a single shake of a paintbrush will spray splotches of paint on a wall. The pattern is a kind of fingerprint for that protein.

The millions of data points can be mathematically reconstructed to form a three-dimensional image of the atomic structure at a single point in time.

Using the XFEL as the light source, this kind of imaging is improved from previous equipment.

Change in an instant
Schmidt and Tenboer employed a “pump and probe” experiment, first inducing a chemical reaction in a protein crystal the size of a bacterium using an optical laser to get the atoms moving. Immediately afterward, the X-rays bombarded the crystal, forming the diffraction patterns.

One experiment is over in less time than it takes to blink, but in that span, protein changes can be documented.

From this data, the researchers obtained high-resolution “maps” of time-resolved differences in the electron density, the cloud of electrons in molecules that shifts around during a reaction.

With the XFEL at their X-ray source, Schmidt and Tenboer have overcome limitations with previous methods to follow these shifts.

The XFEL’s ultra-quick X-ray pulses makes it possible to collect imaging data during a very short time span – nearly instantaneous – and record the change that occurred in the structure as proteins perform their function.

“Biology happens at inconceivably short time spans,” says Tenboer. “So the XFEL at Stanford allows us to do time-resolved studies of proteins in action down to the femtosecond time scale – that’s 10 -15 of a second. The blink of an eye probably happens on a millisecond time scale; so you’re still talking about twelve orders of magnitude faster.”

Also, because the XFEL is a billion times brighter than any existing equipment, scientists can use much smaller crystals, even those at nanoscale, which are easier to form. Laser light used to start a reaction in these very small crystals can penetrate fully through the entire crystal and uniformly initiate a reaction in them.

Both the incredible pulse speed of the XFEL and the strength of the reaction initiated by the optical laser boosted the signal, revealing finer detail.

“This is essential to show unambiguously the structural changes,” Schmidt says.

The next step for the research group is to perform a faster “pump and probe” experiment. With an X-ray pulse of 40 femtoseconds, they hope to see step-by-step changes in the resulting images and evidence of the very first elementary steps that lead to the function of these proteins.

UWM and the majority of the experimental team on this work is involved in a Science and Technology Center (STC) called “BioXFEL.” Its mission is to use the XFEL to watch biomolecular machines at work, understand how these molecular machines support life, and provide training and new tools to the scientific community. Funded by the National Science Foundation, the STC is led by SUNY Buffalo and includes Arizona State University, Cornell University, Rice University, Stanford University and the University of California at Davis and at San Francisco.

Contact Information
Laura Hunt
Senior Writer
LLHunt@uwm.edu
Phone: 414-229-6447

Laura Hunt | newswise
Further information:
http://www.uwm.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>