Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A First-of-Its-Kind Discovery with an XFEL

08.12.2014

UWM team the first to “see” atomic changes in proteins with record resolution

A research team led by physicists at the University of Wisconsin-Milwaukee (UWM) has proven a method that makes it possible to find the atomic structure of proteins in action by producing “snapshots” of them with unprecedented spatial and temporal resolution.


Mathematically reconstructed "maps" show movement of electron clouds in the molecules of the protein. Red represents the location at one point in time and blue represents a different location a microsecond later.

What made it possible were the ultra-short X-ray pulses of a Free Electron Laser (XFEL).

Physics professor Marius Schmidt and doctoral student Jason Tenboer recently completed the experiment with the XFEL at the Stanford Linear Accelerator Center (SLAC) in California.

It confirms that the XFEL imaging method, called time-resolved serial femtosecond crystallography (TR-SFX), can unmask protein structures that have never been seen before, determine what each protein does and reveal how they work together to carry out nearly every function in a living organism.

The experiment also involved researchers from Arizona State University, SUNY Buffalo, University of Chicago, Imperial College London, Lawrence Livermore National Laboratory, Stanford Linear Accelerator Center, and the Deutsches Elektronen-Synchrotron (DESY). Results are published today in the journal Science.

Structure equals function
The successful test of the method they used has opened the door to discovering what Schmidt calls “some of the grand challenges of biology.” Proteins are behind almost everything that happens in a living organism, and they play a pivotal role not only in human health, but also in issues as diverse as food, drug discovery and energy.

“We want to understand the molecular basis of life,” he says.

But advances are only possible if scientists know what each protein does. For that, they have to know the structure – the arrangements of the atoms in each and how they change when proteins work together.

“We could observe reactions in certain proteins before,” says Schmidt, “but our new results show that we can now investigate reactions in almost all proteins.”

X-ray crystallography is the method of choice to image proteins with near atomic resolution: X-rays are shot at a protein crystal and diffract off in many directions, creating a pattern of dots the way a single shake of a paintbrush will spray splotches of paint on a wall. The pattern is a kind of fingerprint for that protein.

The millions of data points can be mathematically reconstructed to form a three-dimensional image of the atomic structure at a single point in time.

Using the XFEL as the light source, this kind of imaging is improved from previous equipment.

Change in an instant
Schmidt and Tenboer employed a “pump and probe” experiment, first inducing a chemical reaction in a protein crystal the size of a bacterium using an optical laser to get the atoms moving. Immediately afterward, the X-rays bombarded the crystal, forming the diffraction patterns.

One experiment is over in less time than it takes to blink, but in that span, protein changes can be documented.

From this data, the researchers obtained high-resolution “maps” of time-resolved differences in the electron density, the cloud of electrons in molecules that shifts around during a reaction.

With the XFEL at their X-ray source, Schmidt and Tenboer have overcome limitations with previous methods to follow these shifts.

The XFEL’s ultra-quick X-ray pulses makes it possible to collect imaging data during a very short time span – nearly instantaneous – and record the change that occurred in the structure as proteins perform their function.

“Biology happens at inconceivably short time spans,” says Tenboer. “So the XFEL at Stanford allows us to do time-resolved studies of proteins in action down to the femtosecond time scale – that’s 10 -15 of a second. The blink of an eye probably happens on a millisecond time scale; so you’re still talking about twelve orders of magnitude faster.”

Also, because the XFEL is a billion times brighter than any existing equipment, scientists can use much smaller crystals, even those at nanoscale, which are easier to form. Laser light used to start a reaction in these very small crystals can penetrate fully through the entire crystal and uniformly initiate a reaction in them.

Both the incredible pulse speed of the XFEL and the strength of the reaction initiated by the optical laser boosted the signal, revealing finer detail.

“This is essential to show unambiguously the structural changes,” Schmidt says.

The next step for the research group is to perform a faster “pump and probe” experiment. With an X-ray pulse of 40 femtoseconds, they hope to see step-by-step changes in the resulting images and evidence of the very first elementary steps that lead to the function of these proteins.

UWM and the majority of the experimental team on this work is involved in a Science and Technology Center (STC) called “BioXFEL.” Its mission is to use the XFEL to watch biomolecular machines at work, understand how these molecular machines support life, and provide training and new tools to the scientific community. Funded by the National Science Foundation, the STC is led by SUNY Buffalo and includes Arizona State University, Cornell University, Rice University, Stanford University and the University of California at Davis and at San Francisco.

Contact Information
Laura Hunt
Senior Writer
LLHunt@uwm.edu
Phone: 414-229-6447

Laura Hunt | newswise
Further information:
http://www.uwm.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>