Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A First-of-Its-Kind Discovery with an XFEL

08.12.2014

UWM team the first to “see” atomic changes in proteins with record resolution

A research team led by physicists at the University of Wisconsin-Milwaukee (UWM) has proven a method that makes it possible to find the atomic structure of proteins in action by producing “snapshots” of them with unprecedented spatial and temporal resolution.


Mathematically reconstructed "maps" show movement of electron clouds in the molecules of the protein. Red represents the location at one point in time and blue represents a different location a microsecond later.

What made it possible were the ultra-short X-ray pulses of a Free Electron Laser (XFEL).

Physics professor Marius Schmidt and doctoral student Jason Tenboer recently completed the experiment with the XFEL at the Stanford Linear Accelerator Center (SLAC) in California.

It confirms that the XFEL imaging method, called time-resolved serial femtosecond crystallography (TR-SFX), can unmask protein structures that have never been seen before, determine what each protein does and reveal how they work together to carry out nearly every function in a living organism.

The experiment also involved researchers from Arizona State University, SUNY Buffalo, University of Chicago, Imperial College London, Lawrence Livermore National Laboratory, Stanford Linear Accelerator Center, and the Deutsches Elektronen-Synchrotron (DESY). Results are published today in the journal Science.

Structure equals function
The successful test of the method they used has opened the door to discovering what Schmidt calls “some of the grand challenges of biology.” Proteins are behind almost everything that happens in a living organism, and they play a pivotal role not only in human health, but also in issues as diverse as food, drug discovery and energy.

“We want to understand the molecular basis of life,” he says.

But advances are only possible if scientists know what each protein does. For that, they have to know the structure – the arrangements of the atoms in each and how they change when proteins work together.

“We could observe reactions in certain proteins before,” says Schmidt, “but our new results show that we can now investigate reactions in almost all proteins.”

X-ray crystallography is the method of choice to image proteins with near atomic resolution: X-rays are shot at a protein crystal and diffract off in many directions, creating a pattern of dots the way a single shake of a paintbrush will spray splotches of paint on a wall. The pattern is a kind of fingerprint for that protein.

The millions of data points can be mathematically reconstructed to form a three-dimensional image of the atomic structure at a single point in time.

Using the XFEL as the light source, this kind of imaging is improved from previous equipment.

Change in an instant
Schmidt and Tenboer employed a “pump and probe” experiment, first inducing a chemical reaction in a protein crystal the size of a bacterium using an optical laser to get the atoms moving. Immediately afterward, the X-rays bombarded the crystal, forming the diffraction patterns.

One experiment is over in less time than it takes to blink, but in that span, protein changes can be documented.

From this data, the researchers obtained high-resolution “maps” of time-resolved differences in the electron density, the cloud of electrons in molecules that shifts around during a reaction.

With the XFEL at their X-ray source, Schmidt and Tenboer have overcome limitations with previous methods to follow these shifts.

The XFEL’s ultra-quick X-ray pulses makes it possible to collect imaging data during a very short time span – nearly instantaneous – and record the change that occurred in the structure as proteins perform their function.

“Biology happens at inconceivably short time spans,” says Tenboer. “So the XFEL at Stanford allows us to do time-resolved studies of proteins in action down to the femtosecond time scale – that’s 10 -15 of a second. The blink of an eye probably happens on a millisecond time scale; so you’re still talking about twelve orders of magnitude faster.”

Also, because the XFEL is a billion times brighter than any existing equipment, scientists can use much smaller crystals, even those at nanoscale, which are easier to form. Laser light used to start a reaction in these very small crystals can penetrate fully through the entire crystal and uniformly initiate a reaction in them.

Both the incredible pulse speed of the XFEL and the strength of the reaction initiated by the optical laser boosted the signal, revealing finer detail.

“This is essential to show unambiguously the structural changes,” Schmidt says.

The next step for the research group is to perform a faster “pump and probe” experiment. With an X-ray pulse of 40 femtoseconds, they hope to see step-by-step changes in the resulting images and evidence of the very first elementary steps that lead to the function of these proteins.

UWM and the majority of the experimental team on this work is involved in a Science and Technology Center (STC) called “BioXFEL.” Its mission is to use the XFEL to watch biomolecular machines at work, understand how these molecular machines support life, and provide training and new tools to the scientific community. Funded by the National Science Foundation, the STC is led by SUNY Buffalo and includes Arizona State University, Cornell University, Rice University, Stanford University and the University of California at Davis and at San Francisco.

Contact Information
Laura Hunt
Senior Writer
LLHunt@uwm.edu
Phone: 414-229-6447

Laura Hunt | newswise
Further information:
http://www.uwm.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>