Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A four-dimensional picture of our three-dimensional world

29.09.2008
Scientists use a theory that exists in higher dimensions to better understand the process by which a neutron decays into a proton

An international team of scientists from RIKEN at Brookhaven National Laboratory (BNL) and elsewhere in the USA, Japan and the UK are testing the Standard Model—the foundation of high-energy physics that unifies three of the four known forces found in nature—by calculating a well-known nuclear decay process (1).

Summarizing the work, Thomas Blum, a member of the team, says: “We want to understand the structure of the particles in the nucleus from the standpoint of the Standard Model, in general, and quantum-chromodynamics (QCD), in particular. QCD is the theoretical basis for the strong force between quarks, the particles that make up neutrons, protons and other particles that are the building blocks of matter in our universe.”

Most of the predictions of the Standard Model, which was developed in the 1960s, can only be tested at high-energy particle accelerators, such as CERN in Switzerland, or the Relativistic Heavy Ion Collider (RHIC) at BNL in the USA. In contrast, beta decay in radioactive nuclei is a well-known process that can be measured, extremely accurately, with a simple experimental set-up. Beta-decay occurs when a neutron emits an electron and a massless particle called a neutrino (Fig. 1). In so doing, the neutron turns into a proton.

Blum and colleagues calculated the part of the decay rate of the neutron that depends on QCD, using a numerical method called ‘lattice gauge theory’ in which each point on a grid corresponds to a point in space–time. By solving the problem on successively finer grids, the calculations approach the true ‘continuum limit’ of the real world. The state-of-the-art calculations were made possible through the use of the QCDOC supercomputers at Columbia University, the RIKEN BNL Research Center, and the University of Edinburgh.

Most implementations of lattice gauge theory correspond to three spatial dimensions and one time dimension, but Blum and his colleagues use a ‘mathematical trick’ called ‘domain wall fermions’. They perform their calculations in four space dimensions—only reducing their answer back to the three-dimensional world at the end. The trick allows the group to capture important physics that most three-dimensional theories cannot.

An important aspect of the work lies in being able to test a sophisticated numerical technique that is consistent with the Standard Model and QCD against a simple result—neutron beta-decay. Confirmation that their results are accurate gives theorists the confidence to pursue increasingly complex problems in particle and nuclear physics.

1. Yamazaki, T., Aoki, Y., Blum, T., Lin, H.W., Lin, M. F., Ohta, S., Sasaki, S., Tweedie, R.J. & Zanotti, J.M. Nucleon axial charge in (2+1)-flavor dynamical-lattice QCD with domain-wall fermions. Physical Review Letters 100, 171602 (2008).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/523/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>