Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A deeper look at interfaces

16.01.2014
A Deeper Look at Interfaces: Researchers at Berkeley Lab’s Advanced Light Source Develop New Technique for Probing Subsurface Electronic Structure

“The interface is the device,” Nobel laureate Herbert Kroemer famously observed, referring to the remarkable properties to be found at the junctures where layers of different materials meet.


Experimental setup and basic principles of SWARPES shows (a) the experimental setup; (b) diagram of the multilayer STO and LSMO film; (c) SW-excited photoemission intensity rocking curves and (d) simulated intensity of the x-ray standing wave field as a function of depth and grazing incidence angle.

In today’s burgeoning world of nanotechnology, the interfaces between layers of metal oxides are becoming increasingly prominent, with applications in such high-tech favorites as spintronics, high-temperature superconductors, ferroelectrics and multiferroics. Realizing the vast potential of these metal oxide interfaces, especially those buried in subsurface layers, will require detailed knowledge of their electronic structure.

A new technique from an international team of researchers working at Berkeley Lab’s Advanced Light Source (ALS) promises to deliver the goods. In a study led by Charles Fadley, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California Davis, where he is a Distinguished Professor of Physics, the team combined two well-established techniques for studying electronic structure in crystalline materials into a new technique that is optimized for examining electronic properties at subsurface interfaces. They call this new technique SWARPES, for Standing Wave Angle-Resolved Photoemission Spectroscopy.

“SWARPES allows us for the first time to selectively study buried interfaces with either soft or hard x-rays,” Fadley says. “The technique can be applied to any multilayer prototype device structure in spintronics, strongly correlated/high-TC superconductors, or semiconductor electronics. The only limitations are that the sample has to have a high degree of crystalline order, and has to be grown on a nanoscale multilayer mirror suitable for generating an x-ray standing wave.”

As the name indicates, SWARPES combines the use of standing waves of x-rays with ARPES, the technique of choice for studying electronic structure. A standing wave is a vibrational pattern created when two waves of identical wavelength interfere with one another: one is the incident x-ray and the other is the x-ray reflected by a mirror. Interactions between standing waves and core-level electrons reveal much about the properties of each atomic species in a sample. ARPES from the outer valence levels is the long-standing spectroscopic workhorse for the study of electronic structure. X-rays striking a material surface or interface cause the photoemission of electrons at angles and kinetic energies that can be measured to obtain detailed electronic energy levels of the sample. While an extremely powerful tool, ARPES, a soft x-ray technique, is primarily limited to the study of near-surface atoms. It’s harder x-ray cousin, HARPES, makes use of more energetic x-rays to effectively probe subsurface interfaces, but the addition of the standing wave capability provides a much desired depth selectivity.

Experimental setup and basic principles of SWARPES shows (a) the experimental setup; (b) diagram of the multilayer STO and LSMO film; (c) SW-excited photoemission intensity rocking curves and (d) simulated intensity of the x-ray standing wave field as a function of depth and grazing incidence angle.

Experimental setup and basic principles of SWARPES shows (a) the experimental setup; (b) diagram of the multilayer STO and LSMO film; (c) SW-excited photoemission intensity rocking curves and (d) simulated intensity of the x-ray standing wave field as a function of depth and grazing incidence angle. (click for high-res version)

“The standing wave can be moved up and down in a sample simply by rocking the angle of incidence around the Bragg angle of the mirror,” says Alexander Gray, a former member of Fadley’s UC Davis research group and affiliate with Berkeley Lab’s Materials Sciences Division, who is now a postdoctoral associate at Stanford/SLAC. “Observing an interface between a ferromagnetic conductor (lanthanum strontium manganite) and an insulator (strontium titanate), which constitute a magnetic tunnel junction used in spintronic logic circuits, we’ve shown that changes in the electronic structure can be reliably measured, and that these changes are semi-quantitatively predicted by theory at several levels. Our results point to a much wider use of SWARPES in the future for studying the electronic properties of buried interfaces of many different kinds.”

Fadley, Gray and their collaborators carried out their SWARPES tests at ALS Beamline 7.0.1. The Advanced Light Source is a U.S. Department of Energy (DOE) national user facility and Beamline 7.0.1 features a premier endstation for determining the electronic structure of metals, semiconductors and insulators. Additional corroborating measurements concerning the interface atomic structure were performed at the National Center for Electron Microscopy (NCEM), another DOE national user facility hosted at Berkeley Lab.

Results of this study have been published in Europhysics Letters (EPL). The paper is titled “Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission.” Gray was the lead author, Fadley the corresponding author. For a full list of co-authors and their host institutes download the paper here:
http://www.physics.ucdavis.edu/fadleygroup/SWARPES_EPL_104_17004_2013.
reprint.pdf
This research was supported primarily by the U.S. Department of Energy (DOE) Office of Science.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Upside down and inside out
27.04.2015 | University of Cambridge

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>