Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A dark matter disk in our Galaxy

16.09.2008
An international team of scientists predict that our Galaxy, the Milky Way, contains a disk of ‘dark matter’.

In a paper published in Monthly Notices of the Royal Astronomical Society, astronomers Dr Justin Read, Professor George Lake and Oscar Agertz of the University of Zurich, and Dr Victor Debattista of the University of Central Lancashire use the results of a supercomputer simulation to deduce the presence of this disk. They explain how it could allow physicists to directly detect and identify the nature of dark matter for the first time.

Unlike the familiar ‘normal’ matter that makes up stars, gas and dust, ‘dark’ matter is invisible but its presence can be inferred through its gravitational influence on its surroundings. Physicists believe that it makes up 22% of the mass of the Universe (compared with the 4% of normal matter and 74% comprising the mysterious ‘dark energy’). But, despite its pervasive influence, no-one is sure what dark matter consists of.

Prior to this work, it was thought that dark matter forms in roughly spherical lumps called ‘halos’, one of which envelopes the Milky Way. But this ‘standard’ theory is based on supercomputer simulations that model the gravitational influence of the dark matter alone. The new work includes the gravitational influence of the stars and gas that also make up our Galaxy.

Stars and gas are thought to have settled into disks very early on in the life of the Universe and this affected how smaller dark matter halos formed. The team’s results suggest that most lumps of dark matter in our locality merged to form a halo around the Milky Way. But the largest lumps were preferentially dragged towards the galactic disk and were then torn apart, creating a disk of dark matter within the Galaxy.

“The dark disk only has about half of the density of the dark matter halo, which is why no one has spotted it before,” said lead author Justin Read. “However, despite its low density, if the disk exists it has dramatic implications for the detection of dark matter here on Earth.”

The Earth and Sun move at some 220 kilometres per second along a nearly circular orbit about the centre of our Galaxy. Since the dark matter halo does not rotate, from an Earth-based perspective it feels as if we have a ‘wind’ of dark matter flowing towards us at great speed. By contrast, the ‘wind’ from the dark disk is much slower than from the halo because the disk co-rotates with the Earth.

“It's like sitting in your car on the highway moving at a hundred kilometres an hour”, said team member Dr Victor Debattista. “It feels like all of the other cars are stationary because they are moving at the same speed.”

This abundance of low-speed dark matter particles could be a real boon for researchers because they are more likely to excite a response in dark matter detectors than fast-moving particles. “Current detectors cannot distinguish these slow moving particles from other background ‘noise’,” said Prof. Laura Baudis, a collaborator at the University of Zurich and one of the lead investigators for the XENON direct detection experiment, which is located at the Gran Sasso Underground Laboratory in Italy. “But the XENON100 detector that we are turning on right now is much more sensitive. For many popular dark matter particle candidates, it will be able to see something if it’s there.”

This new research raises the exciting prospect that the dark disk – and dark matter – could be directly detected in the very near future.

FURTHER INFORMATION

Monthly Notices of the Royal Astronomical Society paper
http://dx.doi.org/10.1111/j.1365-2966.2008.13643.x
CONTACT
Dr Justin Read
Institute for Theoretical Physics
University of Zurich
Winterthurerstrasse 190, CH-8057 Zurich
Switzerland
Tel: +41 (0) 44 63 56196, Mob: +41 (0) 76 200 5394
E-mail: justin@physik.unizh.ch
Web: http://www.justinread.net

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://www.theorie.physik.uzh.ch/~justin/DarkDisk/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>