Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Dance of Black Holes

22.04.2014

A pair of supermassive black holes in orbit around one another have been discovered by an international research team including Stefanie Komossa from the Max Planck Institute for Radio Astronomy in Bonn, Germany.

This is the first time such a pair could be found in an ordinary galaxy. They were discovered because they ripped apart a star when ESA’s space observatory XMM-Newton happened to be looking in their direction.


Artist’s impression of a pair of black holes. One of them is accreting the 'debris' of the disrupted star, while the second is temporarily interrupting the stream of gas toward the other black hole. ESA/C. Carreau


Artist's impression of XMM-Newton spacecraft in orbit around the Earth. The X-ray emission from galaxy SDSS J120136.02+300305.5 was detected in slew modus of the space observatory. ESA/D. Ducros

Most massive galaxies in the Universe are thought to harbour at least one supermassive black hole at their centre. Two supermassive black holes are the smoking gun that the galaxy has merged with another. Thus, finding binary supermassive black holes can tell astronomers about how galaxies evolved into their present-day shapes and sizes.

To date, only a few candidates for close binary supermassive black holes have been found. All are in active galaxies where they are constantly ripping gas clouds apart, in the prelude to crushing them out of existence.

In the process of destruction, the gas is heated so much that it shines at many wavelengths, including X-rays. This gives the galaxy an unusually bright centre, and leads to it being called active. The new discovery, reported by Fukun Liu from Peking University in China, and colleagues, is important because it is the first to be found in a galaxy that is not active.

“There might be a whole population of quiescent galaxies that host binary black holes in their centres,” says co-author Stefanie Komossa, Max-Planck-Institut für Radioastronomie, Bonn, Germany. But finding them is a difficult task because in quiescent galaxies, there are no gas clouds feeding the black holes, and so the cores of these galaxies are truly dark.

The only hope that the astronomers have is to be looking in the right direction at the moment one of the black holes goes to work, and rips a star to pieces. Such an occurrence is called a ‘tidal disruption event’. As the star is pulled apart by the gravity of the black hole, it gives out a flare of X-rays.

In an active galaxy, the black hole is continuously fed by gas clouds. In a quiescent galaxy, the black hole is fed by tidal disruption events that occur sporadically and are impossible to predict. So, to increase the chances of catching such an event, researchers use ESA’s X-ray observatory, XMM-Newton, in a novel way.

Usually, the observatory collects data from designated targets, one at a time. Once it completes an observation, it slews to the next. The trick is that during this movement, XMM-Newton keeps the instruments turned on and recording. Effectively this surveys the sky in a random pattern, producing data that can be analysed for unknown or unexpected sources of X-rays.

On 10 June 2010, a tidal disruption event was spotted by XMM-Newton in galaxy SDSS J120136.02+300305.5, approximately 2 billion light years away. Komossa and her colleagues were scanning the data for such events and scheduled follow-up observations just days later with XMM-Newton and NASA’s Swift satellite.

The galaxy was still spilling X-rays into space. It looked exactly like a tidal disruption event caused by a supermassive black hole but as they tracked the slowly fading emission day after day something strange happened.

The X-rays fell below detectable levels between days 27 and 48 after the discovery. Then they re-appeared and continued to follow a more expected fading rate, as if nothing had happened.

Now, thanks to Fukun Liu, this behaviour can be explained. “This is exactly what you would expect from a pair of supermassive black holes orbiting one another,” says Liu.

Liu had been working on models of black hole binary systems that predicted a sudden plunge to darkness and then the recovery because the gravity of one of the black holes disrupted the flow of gas onto the other, temporarily depriving it of fuel to fire the X-ray flare. He found that two possible configurations were possible to reproduce the observations of J120136.

In the first, the primary black hole contained 10 million solar masses and was orbited by a black hole of about a million solar masses in an elliptical orbit. In the second solution, the primary black hole was about a million solar masses in a circular orbit.

In both cases, the separation between the black holes was relatively small: 0.6 milliparsecs, or about 2 thousandths of a light year. This is about the width of our Solar System.

Being this close, the fate of this newly discovered black hole pair is sealed. They will radiate their orbital energy away, gradually spiralling together, until in about two million years time they will merge into a single black hole.

Now that astronomers have found this first candidate for a binary black hole in a quiescent galaxy, the search is inevitably on for more. XMM-Newton will continue its slew survey. This detection will also spur interest in a network of telescopes that search the whole sky for tidal disruption events.

“Once we have detected thousands of tidal disruption events, we can begin to extract reliable statistics about the rate at which galaxies merge,” says Stefanie Komossa.

When binary black holes merge, they are predicted to release a massive burst of energy into the Universe but not mostly in X-rays. “The final merger is expected to be the strongest source of gravitational waves in the Universe,” states Fukun Liu.

“The innovative use of XMM-Newton’s slew observations made the detection of this binary supermassive black hole system possible,” concludes Norbert Schartel, ESA's XMM-Newton Project Scientist. “This demonstrates the important role that long-lasting space observatories have in detecting such rare events that can potentially open new areas in astronomy.”

Original Paper:
A milli-parsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5”, by F.K. Liu, Shuo Li, and S. Komossa, published in: 2014, Astrophysical Journal, Volume 786, Article 103 (May 10). DOI:10.1088/0004-637X/786/2/103. arXiv:1404.4933 [astro-ph.HE]

Contact:

Dr. Stefanie Komossa,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-431
E-mail: skomossa@mpifr-bonn.mpg.de

Dr. Norbert Schartel,
ESA XMM-Newton Project Scientist,
European Space Agency.
Fon: +34-91-8131-184
E-Mail: Norbert.Schartel@esa.int

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de


Background Information

Gravitational Waves: Gravitational waves are ripples in the space-time continuum. Astronomers around the world are currently building a new type of observatory to detect these ripples. ESA is also involved in opening this new window on the Universe. In 2015, ESA will launch LISA Pathfinder, which will test the necessary technology for building a space-based gravitational wave detector that must be placed in space. The search for elusive gravitational waves is also the theme for one of ESA’s next large science missions, the L3 mission in the Cosmic Vision programme.

XMM-Newton: The European Space Agency's X-ray Multi-Mirror Mission, XMM-Newton, was launched in December 1999. It is the biggest scientific satellite to have been built in Europe and uses over 170 wafer-thin cylindrical mirrors spread over three high throughput X-ray telescopes. Its mirrors are among the most powerful ever developed. XMM-Newton's orbit takes it almost a third of the way to the Moon, allowing for long, uninterrupted views of celestial objects.

Sloan Digital Sky Survey: The name of the target galaxy, SDSS J120136.02+300305.5, refers to the Sloan Digital Sky Survey (SDSS), a spectroscopic redshift survey covering almost a quarter of the sky. The redshift of that galaxy was found to z = 0.146, corresponding to a distance of approximately 2 billion light years. The galaxy is in the direction of the constellation Ursa Major (the “Big Dipper”).

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2014/3

Norbert Junkes | Max-Planck-Institut

Further reports about: Dance ESA Max-Planck-Institut Radioastronomie SDSS Universe X-ray X-rays XMM-Newton black hole clouds galaxies gravitational

More articles from Physics and Astronomy:

nachricht Winds a quarter the speed of light spotted leaving mysterious binary systems
29.04.2016 | University of Cambridge

nachricht Possible Extragalactic Source of High-Energy Neutrinos
28.04.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>