Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Curious Pair of Galaxies

18.03.2009
The ESO Very Large Telescope has taken the best image ever of a strange and chaotic duo of interwoven galaxies. The images also contain some surprises — interlopers both far and near.

Sometimes objects in the sky that appear strange, or different from normal, have a story to tell and prove scientifically very rewarding. This was the idea behind Halton Arp’s catalogue of Peculiar Galaxies that appeared in the 1960s.

One of the oddballs listed there is Arp 261, which has now been imaged in more detail than ever before using the FORS2 instrument on ESO’s Very Large Telescope. The image proves to contain several surprises.

Arp 261 lies about 70 million light-years distant in the constellation of Libra, the Scales. Its chaotic and very unusual structure is created by the interaction of two galaxies that are engaged in a slow motion, but highly disruptive close encounter. Although individual stars are very unlikely to collide in such an event, the huge clouds of gas and dust certainly do crash into each other at high speed, leading to the formation of bright new clusters of very hot stars that are clearly seen in the picture. The paths of the existing stars in the galaxies are also dramatically disrupted, creating the faint swirls extending to the upper left and lower right of the image. Both interacting galaxies were probably dwarfs not unlike the Magellanic Clouds orbiting our own galaxy.

The images used to create this picture were not actually taken to study the interacting galaxies at all, but to investigate the properties of the inconspicuous object just to the right of the brightest part of Arp 261 and close to the centre of the image. This is an unusual exploding star, called SN 1995N, that is thought to be the result of the final collapse of a massive star at the end of its life, a so-called core collapse supernova. SN 1995N is unusual because it has faded very slowly — and still shows clearly on this image more than seven years after the explosion took place! It is also one of the few supernovae to have been observed to emit X-rays. It is thought that these unusual characteristics are a result of the exploding star being in a dense region of space so that the material blasted out from the supernova ploughs into it and creates X-rays.

Apart from the interacting galaxy and its supernova the image also contains several other objects at wildly different distances from us. Starting very close to home, two small asteroids, in our Solar System between the orbits of Mars and Jupiter, happened to cross the images as they were being taken and show up as the red-green-blue trails at the left and top of the picture. The trails arise as the objects are moving during the exposures and also between the exposures through different coloured filters. The asteroid at the top is number 14670 and the one to the left number 9735. They are probably less than 5 km across. The reflected sunlight from these small bodies takes about fifteen minutes to get to the Earth.

The next closest object is probably the apparently bright star at the bottom. It may look bright, but it is still about one hundred times too faint to be seen with the unaided eye. It is most likely a star rather like the Sun and about 500 light-years from us — 20 million times further away than the asteroids. Arp 261 itself, and the supernova, are about 140 000 times further away again than this star, but still in what astronomers would regard as our cosmic neighbourhood. Much more distant still, perhaps some fifty to one hundred times further away than Arp 261, lies the cluster of galaxies visible on the right of the picture. There is no doubt, however, that a much more remote object lies, unrecognised, amongst the faint background objects seen in this marvellous image.

Contact
Henri Boffin
ESO education and Public Outreach Department
Phone: +49 89 3200 6222
E-mail: hboffin (at) eso.org
ESO Press Officer in Chile: Valentina Rodriguez - +56 2 463 3123 - vrodrigu@eso.org

Dr. Henri Boffin | EurekAlert!
Further information:
http://www.eso.org
http://www.eso.org/public/outreach/press-rel/pr-2009/pr-11-09.html

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>