Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A “Cosmic Weather Balloon” at the Centre of the Milky Way

30.09.2013
Astrophysicists determine strength of the radiation field using an intergalactic gas cloud

The radiation field at the centre of the Milky Way must be 1,000 times stronger than in the area surrounding our sun. Astrophysicists of the “Milky Way Galaxy” Collaborative Research Centre of Heidelberg University used computer simulations to reach this conclusion.

The calculations of the researchers from the Centre for Astronomy of Heidelberg University and the Max Planck Institute for Astronomy are based on the data from a type of “cosmic weather balloon” – the temperature data of an especially dense gas cloud near the centre of the Galaxy. Their research provides a new insight into the process of star formation, which is believed to take a different form at the centre of the Milky Way than it does at the Galaxy's edges.

The researchers characterise the centre of our home galaxy as an “inhospitable place”. The “weather conditions” there are reminiscent of those at stormy Cape Horn. While our more distal sun enjoys the conditions of the Galaxy's virtual Italian Riviera, a black hole and extremely hot or exploding stars create an intense “radiation wind” at the Galactic Centre. “In keeping with the metaphor, no one would ever build a ‘vacation home’ somewhere with such harsh conditions. Construction appears to be taking place nonetheless: there are gas clouds near the Galactic Centre where young stars appear to be forming,” says Dr. Paul Clark, a member of Prof. Dr. Ralf Klessen's team at the Centre for Astronomy of Heidelberg University (ZAH).

Dr. Clark and his colleagues studied an especially dense gas cloud called G0.253+0.016 more closely, and in spite of its proximity to the Galactic Centre, a large number of new stars have been observed to be forming there. Star formation is a tug of war between two forces, with gravity pulling interstellar gas inward and the internal pressure of the gas pushing outward. “Near the Galactic Centre, this gas is much hotter than at the edges of the Galaxy due to the strength of the radiation field, leading us to believe that star formation at the centre of the Milky Way differs from how we understand the process at its edges,” explains Dr. Clark.

To better understand the processes at the Galactic Centre, the “weather conditions” there – in this case the strength of the radiation field – need to be determined more precisely. So the researchers used G0.253+0.016 as a type of “cosmic weather balloon”. Astronomical observations were used to determine the temperature of the gas cloud. The data served as a basis for determining the temperature of G0.253+0.016 in relation to the radiation field. The Heidelberg astrophysicists varied the possible strength of this field until the result of the calculations matched the actual temperature measurements. The simulations took advantage of the Jülich-based “Milky Way” supercomputer that is used for projects of the Collaborative Research Centre.

The computer simulations indicated that the radiation field at the centre of the Milky Way must be 1,000 times stronger than in the area around our sun, which is located approx. 25,000 light years away at the Galaxy's edge. The Heidelberg astrophysicists believe that considerably less carbon monoxide (CO) is formed in the extreme conditions in the gas cloud. "Carbon monoxide plays a key role in most star-forming regions, as it helps to regulate the cloud temperatures. The lower CO content in the Galactic Centre clouds will have strong implications for their evolution,“ continues Dr. Clark. Further studies of the “cosmic weather balloon” should provide a complete picture of the star formation process at the centre of the Milky Way.

The results of the research were published in “The Astrophysical Journal Letters”. In addition to Dr. Clark and Prof. Klessen, the research team included Dr. Simon Glover and Dr. Rahul Shetty, as well as Dr. Sarah Ragan from the Heidelberg Max Planck Institute for Astronomy.

Internet information:
“The Milky Way System” Collaborative Research Centre:
http://www.zah.uni-heidelberg.de/de/sfb881
Original publication:
P.C. Clark, S.C.O. Glover, S.E. Ragan, R. Shetty and R.S. Klessen: On the Temperature Structure of the Galactic Center Cloud G0.253+0.016, The Astrophysical Journal Letters, Volume 768, Issue 2, article id. L34, 6 pp. (2013), doi: 10.1088/2041-8205/768/2/L34

Contact:

Dr. Paul Clark
Centre for Astronomy of Heidelberg University
Institute for Theoretical Astrophysics
Phone: +49 6221 54-8967, p.clark@uni-heidelberg.de
Dr. Guido Thimm
Centre for Astronomy of Heidelberg University
Phone: +49 6221 54-1805, thimm@ari.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>