Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A “Cosmic Weather Balloon” at the Centre of the Milky Way

30.09.2013
Astrophysicists determine strength of the radiation field using an intergalactic gas cloud

The radiation field at the centre of the Milky Way must be 1,000 times stronger than in the area surrounding our sun. Astrophysicists of the “Milky Way Galaxy” Collaborative Research Centre of Heidelberg University used computer simulations to reach this conclusion.

The calculations of the researchers from the Centre for Astronomy of Heidelberg University and the Max Planck Institute for Astronomy are based on the data from a type of “cosmic weather balloon” – the temperature data of an especially dense gas cloud near the centre of the Galaxy. Their research provides a new insight into the process of star formation, which is believed to take a different form at the centre of the Milky Way than it does at the Galaxy's edges.

The researchers characterise the centre of our home galaxy as an “inhospitable place”. The “weather conditions” there are reminiscent of those at stormy Cape Horn. While our more distal sun enjoys the conditions of the Galaxy's virtual Italian Riviera, a black hole and extremely hot or exploding stars create an intense “radiation wind” at the Galactic Centre. “In keeping with the metaphor, no one would ever build a ‘vacation home’ somewhere with such harsh conditions. Construction appears to be taking place nonetheless: there are gas clouds near the Galactic Centre where young stars appear to be forming,” says Dr. Paul Clark, a member of Prof. Dr. Ralf Klessen's team at the Centre for Astronomy of Heidelberg University (ZAH).

Dr. Clark and his colleagues studied an especially dense gas cloud called G0.253+0.016 more closely, and in spite of its proximity to the Galactic Centre, a large number of new stars have been observed to be forming there. Star formation is a tug of war between two forces, with gravity pulling interstellar gas inward and the internal pressure of the gas pushing outward. “Near the Galactic Centre, this gas is much hotter than at the edges of the Galaxy due to the strength of the radiation field, leading us to believe that star formation at the centre of the Milky Way differs from how we understand the process at its edges,” explains Dr. Clark.

To better understand the processes at the Galactic Centre, the “weather conditions” there – in this case the strength of the radiation field – need to be determined more precisely. So the researchers used G0.253+0.016 as a type of “cosmic weather balloon”. Astronomical observations were used to determine the temperature of the gas cloud. The data served as a basis for determining the temperature of G0.253+0.016 in relation to the radiation field. The Heidelberg astrophysicists varied the possible strength of this field until the result of the calculations matched the actual temperature measurements. The simulations took advantage of the Jülich-based “Milky Way” supercomputer that is used for projects of the Collaborative Research Centre.

The computer simulations indicated that the radiation field at the centre of the Milky Way must be 1,000 times stronger than in the area around our sun, which is located approx. 25,000 light years away at the Galaxy's edge. The Heidelberg astrophysicists believe that considerably less carbon monoxide (CO) is formed in the extreme conditions in the gas cloud. "Carbon monoxide plays a key role in most star-forming regions, as it helps to regulate the cloud temperatures. The lower CO content in the Galactic Centre clouds will have strong implications for their evolution,“ continues Dr. Clark. Further studies of the “cosmic weather balloon” should provide a complete picture of the star formation process at the centre of the Milky Way.

The results of the research were published in “The Astrophysical Journal Letters”. In addition to Dr. Clark and Prof. Klessen, the research team included Dr. Simon Glover and Dr. Rahul Shetty, as well as Dr. Sarah Ragan from the Heidelberg Max Planck Institute for Astronomy.

Internet information:
“The Milky Way System” Collaborative Research Centre:
http://www.zah.uni-heidelberg.de/de/sfb881
Original publication:
P.C. Clark, S.C.O. Glover, S.E. Ragan, R. Shetty and R.S. Klessen: On the Temperature Structure of the Galactic Center Cloud G0.253+0.016, The Astrophysical Journal Letters, Volume 768, Issue 2, article id. L34, 6 pp. (2013), doi: 10.1088/2041-8205/768/2/L34

Contact:

Dr. Paul Clark
Centre for Astronomy of Heidelberg University
Institute for Theoretical Astrophysics
Phone: +49 6221 54-8967, p.clark@uni-heidelberg.de
Dr. Guido Thimm
Centre for Astronomy of Heidelberg University
Phone: +49 6221 54-1805, thimm@ari.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>