Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cosmic show-down

28.06.2010
The interaction between dense galaxy clusters and large-scale cosmic structures leads to intense shock waves that illustrate the evolution of the universe

Galaxy clusters, which are assemblies of hundreds or even thousands of galaxies, are some of the densest structures in the universe. By studying the growth and dynamics of galaxy clusters, researchers from the RIKEN Advanced Science Institute, Wako, and the Academia Sinica Institute of Astronomy and Astrophysics, Taiwan, have provided valuable clues on the evolution of the universe1.

Huge numbers of stars are not the only distinctive feature of galaxy clusters. Another important component is the intracluster medium (ICM), a hot plasma consisting of electrons and protons, that has a greater mass than the galaxies and extends throughout the vast intergalactical space of the cluster.

The researchers focused their study on the ICM of the galaxy cluster known as A1689. They analyzed x-ray observations made by the Japanese satellite Suzaku; its high sensitivity for x-ray radiation enabled the observation of A1689’s ICM to very large distances away from the center. The researchers also analyzed gravitational lensing effects, where—following Einstein’s theory of relativity—they estimated the total mass of the cluster by the way light from distant galaxies bent around different regions of A1689.

“From the gravitational lensing analysis, the mass distribution of A1689 is precisely known,” notes Madoka Kawaharada from the research team. “Therefore, by adding x-ray information … to the cluster outskirts, we [could] compare the gas dynamics directly with the mass distribution.

Kawaharada and colleagues found significant interactions between the ICM and the large-scale structure of galaxies, sometimes called the ’cosmic web’ that extends throughout the universe. At the region where the A1689 cluster meets the large-scale structure, its ICM gets even hotter than its usual 20 megakelvin, with temperatures reaching 60 megakelvin. This suggests a heating effect by the shock wave that develops where the hot ICM plasma meets ‘colder’ gas from the large-scale structure. In addition, the gravitational lensing data suggest that the ICM in the shock wave region is static, whereas it is moving elsewhere, which supports it against the strong gravitational force of the cluster.

These results provide a valuable insight into the dynamics of these huge cosmic structures, particularly if they can be confirmed for other galaxy clusters, says Kawaharada. “If they behave similarly, it will be evidence that galaxy clusters do interact with the large-scale structure, confirming that they are a continuously evolving product of the structure formation in the universe.”

The corresponding author for this highlight is based at the Cosmic Radiation Laboratory, RIKEN Advanced Science Institute

Journal information

1. Kawaharada, M., Okabe, N., Umetsu, K., Takizawa, M., Matsushita, K., Fukazawa, Y., Hamana, T., Miyazaki, S., Nakazawa, K. & Ohashi, T. Suzaku observation of A1689: Anisotropic temperature and entropy distributions Associated with the large-scale structure. The Astrophysical Journal 714, 423–441 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6317
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>