Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cosmic show-down

28.06.2010
The interaction between dense galaxy clusters and large-scale cosmic structures leads to intense shock waves that illustrate the evolution of the universe

Galaxy clusters, which are assemblies of hundreds or even thousands of galaxies, are some of the densest structures in the universe. By studying the growth and dynamics of galaxy clusters, researchers from the RIKEN Advanced Science Institute, Wako, and the Academia Sinica Institute of Astronomy and Astrophysics, Taiwan, have provided valuable clues on the evolution of the universe1.

Huge numbers of stars are not the only distinctive feature of galaxy clusters. Another important component is the intracluster medium (ICM), a hot plasma consisting of electrons and protons, that has a greater mass than the galaxies and extends throughout the vast intergalactical space of the cluster.

The researchers focused their study on the ICM of the galaxy cluster known as A1689. They analyzed x-ray observations made by the Japanese satellite Suzaku; its high sensitivity for x-ray radiation enabled the observation of A1689’s ICM to very large distances away from the center. The researchers also analyzed gravitational lensing effects, where—following Einstein’s theory of relativity—they estimated the total mass of the cluster by the way light from distant galaxies bent around different regions of A1689.

“From the gravitational lensing analysis, the mass distribution of A1689 is precisely known,” notes Madoka Kawaharada from the research team. “Therefore, by adding x-ray information … to the cluster outskirts, we [could] compare the gas dynamics directly with the mass distribution.

Kawaharada and colleagues found significant interactions between the ICM and the large-scale structure of galaxies, sometimes called the ’cosmic web’ that extends throughout the universe. At the region where the A1689 cluster meets the large-scale structure, its ICM gets even hotter than its usual 20 megakelvin, with temperatures reaching 60 megakelvin. This suggests a heating effect by the shock wave that develops where the hot ICM plasma meets ‘colder’ gas from the large-scale structure. In addition, the gravitational lensing data suggest that the ICM in the shock wave region is static, whereas it is moving elsewhere, which supports it against the strong gravitational force of the cluster.

These results provide a valuable insight into the dynamics of these huge cosmic structures, particularly if they can be confirmed for other galaxy clusters, says Kawaharada. “If they behave similarly, it will be evidence that galaxy clusters do interact with the large-scale structure, confirming that they are a continuously evolving product of the structure formation in the universe.”

The corresponding author for this highlight is based at the Cosmic Radiation Laboratory, RIKEN Advanced Science Institute

Journal information

1. Kawaharada, M., Okabe, N., Umetsu, K., Takizawa, M., Matsushita, K., Fukazawa, Y., Hamana, T., Miyazaki, S., Nakazawa, K. & Ohashi, T. Suzaku observation of A1689: Anisotropic temperature and entropy distributions Associated with the large-scale structure. The Astrophysical Journal 714, 423–441 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6317
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>