Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cosmic show-down

28.06.2010
The interaction between dense galaxy clusters and large-scale cosmic structures leads to intense shock waves that illustrate the evolution of the universe

Galaxy clusters, which are assemblies of hundreds or even thousands of galaxies, are some of the densest structures in the universe. By studying the growth and dynamics of galaxy clusters, researchers from the RIKEN Advanced Science Institute, Wako, and the Academia Sinica Institute of Astronomy and Astrophysics, Taiwan, have provided valuable clues on the evolution of the universe1.

Huge numbers of stars are not the only distinctive feature of galaxy clusters. Another important component is the intracluster medium (ICM), a hot plasma consisting of electrons and protons, that has a greater mass than the galaxies and extends throughout the vast intergalactical space of the cluster.

The researchers focused their study on the ICM of the galaxy cluster known as A1689. They analyzed x-ray observations made by the Japanese satellite Suzaku; its high sensitivity for x-ray radiation enabled the observation of A1689’s ICM to very large distances away from the center. The researchers also analyzed gravitational lensing effects, where—following Einstein’s theory of relativity—they estimated the total mass of the cluster by the way light from distant galaxies bent around different regions of A1689.

“From the gravitational lensing analysis, the mass distribution of A1689 is precisely known,” notes Madoka Kawaharada from the research team. “Therefore, by adding x-ray information … to the cluster outskirts, we [could] compare the gas dynamics directly with the mass distribution.

Kawaharada and colleagues found significant interactions between the ICM and the large-scale structure of galaxies, sometimes called the ’cosmic web’ that extends throughout the universe. At the region where the A1689 cluster meets the large-scale structure, its ICM gets even hotter than its usual 20 megakelvin, with temperatures reaching 60 megakelvin. This suggests a heating effect by the shock wave that develops where the hot ICM plasma meets ‘colder’ gas from the large-scale structure. In addition, the gravitational lensing data suggest that the ICM in the shock wave region is static, whereas it is moving elsewhere, which supports it against the strong gravitational force of the cluster.

These results provide a valuable insight into the dynamics of these huge cosmic structures, particularly if they can be confirmed for other galaxy clusters, says Kawaharada. “If they behave similarly, it will be evidence that galaxy clusters do interact with the large-scale structure, confirming that they are a continuously evolving product of the structure formation in the universe.”

The corresponding author for this highlight is based at the Cosmic Radiation Laboratory, RIKEN Advanced Science Institute

Journal information

1. Kawaharada, M., Okabe, N., Umetsu, K., Takizawa, M., Matsushita, K., Fukazawa, Y., Hamana, T., Miyazaki, S., Nakazawa, K. & Ohashi, T. Suzaku observation of A1689: Anisotropic temperature and entropy distributions Associated with the large-scale structure. The Astrophysical Journal 714, 423–441 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6317
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Riddle of matter remains unsolved: Proton and antiproton share fundamental properties
19.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>