Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cosmic show-down

28.06.2010
The interaction between dense galaxy clusters and large-scale cosmic structures leads to intense shock waves that illustrate the evolution of the universe

Galaxy clusters, which are assemblies of hundreds or even thousands of galaxies, are some of the densest structures in the universe. By studying the growth and dynamics of galaxy clusters, researchers from the RIKEN Advanced Science Institute, Wako, and the Academia Sinica Institute of Astronomy and Astrophysics, Taiwan, have provided valuable clues on the evolution of the universe1.

Huge numbers of stars are not the only distinctive feature of galaxy clusters. Another important component is the intracluster medium (ICM), a hot plasma consisting of electrons and protons, that has a greater mass than the galaxies and extends throughout the vast intergalactical space of the cluster.

The researchers focused their study on the ICM of the galaxy cluster known as A1689. They analyzed x-ray observations made by the Japanese satellite Suzaku; its high sensitivity for x-ray radiation enabled the observation of A1689’s ICM to very large distances away from the center. The researchers also analyzed gravitational lensing effects, where—following Einstein’s theory of relativity—they estimated the total mass of the cluster by the way light from distant galaxies bent around different regions of A1689.

“From the gravitational lensing analysis, the mass distribution of A1689 is precisely known,” notes Madoka Kawaharada from the research team. “Therefore, by adding x-ray information … to the cluster outskirts, we [could] compare the gas dynamics directly with the mass distribution.

Kawaharada and colleagues found significant interactions between the ICM and the large-scale structure of galaxies, sometimes called the ’cosmic web’ that extends throughout the universe. At the region where the A1689 cluster meets the large-scale structure, its ICM gets even hotter than its usual 20 megakelvin, with temperatures reaching 60 megakelvin. This suggests a heating effect by the shock wave that develops where the hot ICM plasma meets ‘colder’ gas from the large-scale structure. In addition, the gravitational lensing data suggest that the ICM in the shock wave region is static, whereas it is moving elsewhere, which supports it against the strong gravitational force of the cluster.

These results provide a valuable insight into the dynamics of these huge cosmic structures, particularly if they can be confirmed for other galaxy clusters, says Kawaharada. “If they behave similarly, it will be evidence that galaxy clusters do interact with the large-scale structure, confirming that they are a continuously evolving product of the structure formation in the universe.”

The corresponding author for this highlight is based at the Cosmic Radiation Laboratory, RIKEN Advanced Science Institute

Journal information

1. Kawaharada, M., Okabe, N., Umetsu, K., Takizawa, M., Matsushita, K., Fukazawa, Y., Hamana, T., Miyazaki, S., Nakazawa, K. & Ohashi, T. Suzaku observation of A1689: Anisotropic temperature and entropy distributions Associated with the large-scale structure. The Astrophysical Journal 714, 423–441 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6317
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>