Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A completely new atomic crystal dynamic of the white pigment titanium dioxide discovered

30.08.2013
An international team of researchers at Vienna University of Technology in Austria and at Princeton University in the USA has confirmed theoretically-predicted interactions between single oxygen molecules and crystalline titanium dioxide.

The results, which could be of importance for a variety of applications, have been published in the current issue of Science Magazine.


“A scanning tunneling microscope image of the surface of titanium dioxide with different forms of oxygen. The higher, white peaks are oxygen molecules that are sitting on the surface, the smaller double peak in the foreground is an oxygen molecule that is already embedded,“
Copyright: TU Vienna

Titanium dioxide is an inexpensive, yet versatile material. It is used as a pigment in wall paint, as a biocompatible coating in medical implants, as a catalyst in the chemical industry and as UV protection in sunscreen. When applied as a thin coating, it can keep all sorts of surfaces sparkling clean. The use of titanium oxide in the electronics industry is currently being investigated. Fundamental to all these properties could be the atomic properties discovered by Ulrike Diebold from the Institute of Applied Physics at TU Vienna and Annabella Selloni from the Frick Laboratory at Princeton and their teams.

Oxygen latches on

Diebold’s actual specialism is the physical and chemical properties of surfaces. “The surfaces of materials pose interesting fundamental questions, but are also important for applications”, explains the physicist. The surface of titanium dioxide, for example, interacts with oxygen from the air. How this happens at the atomic level has now been shown in Vienna. Martin Setvin from Diebold’s team took pictures of this surface with a scanning tunneling microscope. In this method, a fine metal tip is held extremely close to a surface, without actually touching it. A voltage is applied between the tip and the sample, which creates what is known as a tunneling current. This current is measured and displayed as an image.

Atomic vacancies pulled upwards
With this method impressive pictures are produced, in which single atoms can clearly be distinguished. By applying a high voltage between the tip and the titanium dioxide crystal, the researchers were able to pull vacancies in the atomic structure caused by single oxygen atoms that are missing to the surface and make images of them. Moreover, in a series of images, Diebold’s team was able to show how differently ionised oxygen molecules become embedded in the surface.
Fuel from CO2, titanium dioxide and light?
With their results, the experimental team in Vienna were able to confirm this atomic dynamic in titanium oxide crystal, which had been previously only been predicted theoretically. “Our results clearly show how important these oxygen vacancies are for the chemical properties of titanium oxide”, states Diebold about the new results from her research group. “We were also able to show that we can alter the charge state of the photocatalytically active oxygen atoms. Perhaps in future it will be possible to produce more active oxygen-rich photocatalysts. These could be used to convert CO2 into useful hydrocarbons, with the help of the titanium dioxide and light.”
Original publication
“Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101)“ by Martin Setvín, Ulrich Aschauer, Philipp Scheiber, Ye-Fei Li, Weiyi Hou, Michael Schmid, Annabella Selloni, Ulrike Diebold. Science, 30 August 2013: http://dx.doi.org/10.1126/science.1239879 (accessible as soon as the article has been officially published)
Until the embargo deadline, journalists can obtain a copy of the original article upon direct request to ‘AAAS Office of Public Programs‘ in the USA:
T +1-202-326-6440
scipak@aaas.org
Press photos
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/titandioxid
Contact
Prof. Ulrike Diebold
Institute for Applied Physics
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna
M +43-664-60588-3467
ulrike.diebold@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Further information:
http://www.tuwien.ac.at

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>