A completely new atomic crystal dynamic of the white pigment titanium dioxide discovered

“A scanning tunneling microscope image of the surface of titanium dioxide with different forms of oxygen. The higher, white peaks are oxygen molecules that are sitting on the surface, the smaller double peak in the foreground is an oxygen molecule that is already embedded,“<br>Copyright: TU Vienna<br>

The results, which could be of importance for a variety of applications, have been published in the current issue of Science Magazine.

Titanium dioxide is an inexpensive, yet versatile material. It is used as a pigment in wall paint, as a biocompatible coating in medical implants, as a catalyst in the chemical industry and as UV protection in sunscreen. When applied as a thin coating, it can keep all sorts of surfaces sparkling clean. The use of titanium oxide in the electronics industry is currently being investigated. Fundamental to all these properties could be the atomic properties discovered by Ulrike Diebold from the Institute of Applied Physics at TU Vienna and Annabella Selloni from the Frick Laboratory at Princeton and their teams.

Oxygen latches on

Diebold’s actual specialism is the physical and chemical properties of surfaces. “The surfaces of materials pose interesting fundamental questions, but are also important for applications”, explains the physicist. The surface of titanium dioxide, for example, interacts with oxygen from the air. How this happens at the atomic level has now been shown in Vienna. Martin Setvin from Diebold’s team took pictures of this surface with a scanning tunneling microscope. In this method, a fine metal tip is held extremely close to a surface, without actually touching it. A voltage is applied between the tip and the sample, which creates what is known as a tunneling current. This current is measured and displayed as an image.

Atomic vacancies pulled upwards
With this method impressive pictures are produced, in which single atoms can clearly be distinguished. By applying a high voltage between the tip and the titanium dioxide crystal, the researchers were able to pull vacancies in the atomic structure caused by single oxygen atoms that are missing to the surface and make images of them. Moreover, in a series of images, Diebold’s team was able to show how differently ionised oxygen molecules become embedded in the surface.
Fuel from CO2, titanium dioxide and light?
With their results, the experimental team in Vienna were able to confirm this atomic dynamic in titanium oxide crystal, which had been previously only been predicted theoretically. “Our results clearly show how important these oxygen vacancies are for the chemical properties of titanium oxide”, states Diebold about the new results from her research group. “We were also able to show that we can alter the charge state of the photocatalytically active oxygen atoms. Perhaps in future it will be possible to produce more active oxygen-rich photocatalysts. These could be used to convert CO2 into useful hydrocarbons, with the help of the titanium dioxide and light.”
Original publication
“Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101)“ by Martin Setvín, Ulrich Aschauer, Philipp Scheiber, Ye-Fei Li, Weiyi Hou, Michael Schmid, Annabella Selloni, Ulrike Diebold. Science, 30 August 2013: http://dx.doi.org/10.1126/science.1239879 (accessible as soon as the article has been officially published)
Until the embargo deadline, journalists can obtain a copy of the original article upon direct request to ‘AAAS Office of Public Programs‘ in the USA:
T +1-202-326-6440
scipak@aaas.org
Press photos
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/titandioxid
Contact
Prof. Ulrike Diebold
Institute for Applied Physics
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna
M +43-664-60588-3467
ulrike.diebold@tuwien.ac.at

Media Contact

Dr. Florian Aigner Technische Universität Wien

More Information:

http://www.tuwien.ac.at

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors