Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A collective of electrons under the influence of light

12.06.2014

Dr. Peter Dombi is now leader of a new MPQ partner group in Budapest

The Max Planck Institute of Quantum Optics has a new research partner group at the Wigner Research Centre for Physics, which is part of the Hungarian Academy of Sciences in Budapest. Dr. Dombi’s research group will work together closely with the Laboratory for Attosecond Physics (LAP) of Prof. Ferenc Krausz at the MPQ for the next three years.


Dr. Peter Dombi

(Photo: MPQ)

Dombi’s team is working on ultrafast interactions of electron collectives in solid states with light, processes which take place within femtoseconds to attoseconds. A femtosecond is a millionth of a billionth of a second (10 to the minus 15), an attosecond is even a thousand times shorter.

In 2013, Prof. Krausz and his team were able to demonstrate for the first time that it is possible to control electrical and optical properties of solid states by using the electrical fields of light. Scientists were now able to turn electric current on and off by using light.

Furthermore light signals could be controlled with the frequency of visible light which oscillates a million times a billion (10 to the 15) per second. Dr. Dombi and his group in Hungary will continue the research on the basis of this knowledge. They will mainly concentrate on ultrafast nanoplasmonic phenomena.

In the field of nanoplasmonics physicists investigate the behaviour of collectives of electrons in solid states of nanometre size, for example metallic nanoparticles. When these collectives are excited by light they generate electric fields at the surfaces. Understanding these light-steered phenomena will help to pave the way towards “light-wave electronics” which operates at frequencies about 100,000 times faster than today’s techniques.

The Max Planck Society is presently related to more than 40 partner groups worldwide. These relations serve as basis for a collective support of young scientists in countries which are interested in research via international cooperation. These countries are, e.g., India, China, Middle and Eastern European as well as South American countries. After three years the work of a group will be evaluated and can be extended up to five years, if the evaluation comes to a positive result.

The Wigner Research Centre for Physics is the largest physics research institute in Hungary with more than 350 employees and 40 research groups. More than 50 years ago, the first laser has been constructed in Hungary and ever since optics and light-matter interactions have been very important elements of the research program. Now, due to this new cooperation with the MPG an important line of research will be added to this program. Thorsten Naeser

For more information please contact:

Dr. Peter Dombi
Wigner Research Centre for Physics
H-1121 Budapest, Konkoly-Thege M. út 29-33, Hungary
Phone: +36 1 392 2209
Telefax: +36 1 392 2215
E-mail: dombi.peter@wigner.mta.hu

Thorsten Naeser
Munich-Centre for Advanced Photonics
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -124
E-mail: thorsten.naeser@mpq.mpg.de

Dr. Olivia Meyer-Streng
MPQ, Press & Public Relations
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.femtolab.hu

Dr. Olivia Meyer-Streng | Max-Planck-Institut

Further reports about: MPQ Max-Planck-Institut Physics Quantenoptik Quantum phenomena surfaces

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>