Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A collective of electrons under the influence of light

12.06.2014

Dr. Peter Dombi is now leader of a new MPQ partner group in Budapest

The Max Planck Institute of Quantum Optics has a new research partner group at the Wigner Research Centre for Physics, which is part of the Hungarian Academy of Sciences in Budapest. Dr. Dombi’s research group will work together closely with the Laboratory for Attosecond Physics (LAP) of Prof. Ferenc Krausz at the MPQ for the next three years.


Dr. Peter Dombi

(Photo: MPQ)

Dombi’s team is working on ultrafast interactions of electron collectives in solid states with light, processes which take place within femtoseconds to attoseconds. A femtosecond is a millionth of a billionth of a second (10 to the minus 15), an attosecond is even a thousand times shorter.

In 2013, Prof. Krausz and his team were able to demonstrate for the first time that it is possible to control electrical and optical properties of solid states by using the electrical fields of light. Scientists were now able to turn electric current on and off by using light.

Furthermore light signals could be controlled with the frequency of visible light which oscillates a million times a billion (10 to the 15) per second. Dr. Dombi and his group in Hungary will continue the research on the basis of this knowledge. They will mainly concentrate on ultrafast nanoplasmonic phenomena.

In the field of nanoplasmonics physicists investigate the behaviour of collectives of electrons in solid states of nanometre size, for example metallic nanoparticles. When these collectives are excited by light they generate electric fields at the surfaces. Understanding these light-steered phenomena will help to pave the way towards “light-wave electronics” which operates at frequencies about 100,000 times faster than today’s techniques.

The Max Planck Society is presently related to more than 40 partner groups worldwide. These relations serve as basis for a collective support of young scientists in countries which are interested in research via international cooperation. These countries are, e.g., India, China, Middle and Eastern European as well as South American countries. After three years the work of a group will be evaluated and can be extended up to five years, if the evaluation comes to a positive result.

The Wigner Research Centre for Physics is the largest physics research institute in Hungary with more than 350 employees and 40 research groups. More than 50 years ago, the first laser has been constructed in Hungary and ever since optics and light-matter interactions have been very important elements of the research program. Now, due to this new cooperation with the MPG an important line of research will be added to this program. Thorsten Naeser

For more information please contact:

Dr. Peter Dombi
Wigner Research Centre for Physics
H-1121 Budapest, Konkoly-Thege M. út 29-33, Hungary
Phone: +36 1 392 2209
Telefax: +36 1 392 2215
E-mail: dombi.peter@wigner.mta.hu

Thorsten Naeser
Munich-Centre for Advanced Photonics
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -124
E-mail: thorsten.naeser@mpq.mpg.de

Dr. Olivia Meyer-Streng
MPQ, Press & Public Relations
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.femtolab.hu

Dr. Olivia Meyer-Streng | Max-Planck-Institut

Further reports about: MPQ Max-Planck-Institut Physics Quantenoptik Quantum phenomena surfaces

More articles from Physics and Astronomy:

nachricht LIGO confirms RIT's breakthrough prediction of gravitational waves
12.02.2016 | Rochester Institute of Technology

nachricht Milestone in physics: gravitational waves detected with the laser system from LZH
12.02.2016 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>