Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A collective of electrons under the influence of light

12.06.2014

Dr. Peter Dombi is now leader of a new MPQ partner group in Budapest

The Max Planck Institute of Quantum Optics has a new research partner group at the Wigner Research Centre for Physics, which is part of the Hungarian Academy of Sciences in Budapest. Dr. Dombi’s research group will work together closely with the Laboratory for Attosecond Physics (LAP) of Prof. Ferenc Krausz at the MPQ for the next three years.


Dr. Peter Dombi

(Photo: MPQ)

Dombi’s team is working on ultrafast interactions of electron collectives in solid states with light, processes which take place within femtoseconds to attoseconds. A femtosecond is a millionth of a billionth of a second (10 to the minus 15), an attosecond is even a thousand times shorter.

In 2013, Prof. Krausz and his team were able to demonstrate for the first time that it is possible to control electrical and optical properties of solid states by using the electrical fields of light. Scientists were now able to turn electric current on and off by using light.

Furthermore light signals could be controlled with the frequency of visible light which oscillates a million times a billion (10 to the 15) per second. Dr. Dombi and his group in Hungary will continue the research on the basis of this knowledge. They will mainly concentrate on ultrafast nanoplasmonic phenomena.

In the field of nanoplasmonics physicists investigate the behaviour of collectives of electrons in solid states of nanometre size, for example metallic nanoparticles. When these collectives are excited by light they generate electric fields at the surfaces. Understanding these light-steered phenomena will help to pave the way towards “light-wave electronics” which operates at frequencies about 100,000 times faster than today’s techniques.

The Max Planck Society is presently related to more than 40 partner groups worldwide. These relations serve as basis for a collective support of young scientists in countries which are interested in research via international cooperation. These countries are, e.g., India, China, Middle and Eastern European as well as South American countries. After three years the work of a group will be evaluated and can be extended up to five years, if the evaluation comes to a positive result.

The Wigner Research Centre for Physics is the largest physics research institute in Hungary with more than 350 employees and 40 research groups. More than 50 years ago, the first laser has been constructed in Hungary and ever since optics and light-matter interactions have been very important elements of the research program. Now, due to this new cooperation with the MPG an important line of research will be added to this program. Thorsten Naeser

For more information please contact:

Dr. Peter Dombi
Wigner Research Centre for Physics
H-1121 Budapest, Konkoly-Thege M. út 29-33, Hungary
Phone: +36 1 392 2209
Telefax: +36 1 392 2215
E-mail: dombi.peter@wigner.mta.hu

Thorsten Naeser
Munich-Centre for Advanced Photonics
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -124
E-mail: thorsten.naeser@mpq.mpg.de

Dr. Olivia Meyer-Streng
MPQ, Press & Public Relations
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.femtolab.hu

Dr. Olivia Meyer-Streng | Max-Planck-Institut

Further reports about: MPQ Max-Planck-Institut Physics Quantenoptik Quantum phenomena surfaces

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>