Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A clearer view of a hot technique

06.11.2014

A multifunctional testing instrument helps improve production of laser-heated hard disk drives with enhanced storage capacities

Today’s hard disk drives can hold terabytes of digital data, but manufacturers are having trouble squeezing more storage capacity into these devices using conventional procedures. Now, a new technique that promises to solve this impasse — heat-assisted magnetic recording (HAMR) — can be integrated more efficiently into future hard drives thanks to an analytical tool developed by A*STAR researchers (1).


An advanced testing instrument can measure laser-driven changes to magnetic disk drives with impressive spatial precision.

© ktsimage/iStock/Thinkstock

Data-storing ‘bits’ inside hard disk drives have to be turned on and off with magnetic fields. But as bit sizes diminish to improve storage density, the recording heads need stronger and stronger fields to resolve individual magnetic grains. Eventually, impractically large fields are required to read and write data.

The HAMR approach uses a small laser mounted on the disk recording head to heat up the magnetic material before writing to it. The increase in temperature reduces the magnetic field intensity necessary for data storage and consequently, smaller bit sizes can be used. Rapid cooling of the magnetic grains ensures the stability of the freshly recorded data.

Researchers are confident that the HAMR technique can lead to 20-terabyte hard drives within a few years if some specific challenges can be overcome. One current problem is that accurately testing the temperature-dependent recording in localized regions is difficult. Typical analytical methods have to heat up relatively large sample volumes, a time-consuming process that can irreversibly damage HAMR media.

Hongzhi Yang, with a team from the A*STAR Data Storage Institute and the National University of Singapore designed an improved ‘pump–probe’ laser device to scrutinize HAMR devices. The instrument uses an initial intense beam to heat up a localized region of the magnetic disk.

Then, a weaker laser probes the heated region for the micro-magneto-optic Kerr effect (μ-MOKE), a phenomenon that can gauge a material’s magnetization state.

By repeating these measurements with different heating beam conditions, the researchers obtained detailed data on HAMR writing, reading and magnetic states from specific microscopic spots on the hard drive surface — information currently unavailable through other techniques.

“The challenge in developing this testing instrument was integrating the complex optical and mechanical components to achieve good signal-to-noise ratios and uniform temperature distribution in the media during heating,” says Yang. “But compared to traditional bulk-heating techniques, our method is much faster, allows full disk measurement and avoids annealing effects.”

The team is confident that this instrument can be incorporated into disk drive manufacturing plants as HAMR captures a larger share of magnetic recording technology.

Reference
Yang, H. Z., Chen, Y. J., Leong, S. H., An, C. W., Ye, K. D. et al. A multi-functional testing instrument for heat assisted magnetic recording media. Journal of Applied Physics 115, 17B726 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>