Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough toward industrial production of fluorescent nanodiamonds

09.06.2009
The laboratory « Structure - Activité of Normal & Pathologic Biomolecules– SANPB », Inserm / UEVE U829 (Genopole Evry, France) in collaboration with the Material Centre of Mines-ParisTech (Evry, France), the NRG - UMR 5060 CNRS / UTBM (Technology University of Belfort-Montbéliard) and the Physic Institute of Stuttgart University (Germany) discovered a novel route to fabricate fluorescent nanoparticles from diamond microcrystals. Results are published in Nanotechnology June10 2009 issue.

Fluorescence is a major tool in life and material sciences. In biology/medicine, the coupling of fluorescent dyes, to proteins or nucleic acids (RNA, DNA) allows one to investigate their fate and interactions in cultured cells or in the body. Similarly, fluorescence is used in material sciences to detect electromagnetic fields, for optic storage or tracking (notably to detect fake products). However, most of fluorescent dyes are made of molecules with a limited life time due to chemical reactivity.

In this context fluorescent diamond nanoparticles present a valuable alternative thanks to their outstanding photophysical properties. They are very bright and possess long-term non-bleaching, non-blinking fluorescence in the red/NIR region. Based on these unique properties, multiple applications are foreseen in physics, material science, biochemistry and biology. However, until recently, the production of such nanoparticles was limited to the laboratory.

A single route is nowadays taken to fabricate such fluorescent nanoparticles. It consists of irradiating substitutional nitrogen-containing diamond nanocrystals, produced by the diamond industry, with electron or ion beams to create vacancies in the crystal lattice. Isolated substitutional nitrogen atoms then trap a moving vacancy during annealing to form a fluorescent NV centre. Unfortunately, the efficiency and yield of this route are low due to amorphization and the loss of moving vacancies to the surface during irradiation and annealing.

A top-down processing of diamond microcrystals, which are less prone to amorphization and vacancy loss, would provide a more industrially scalable route. However, in this case two barriers have to be surmounted – the difficulties of irradiating large amounts of material and converting microdiamonds into nanocrystals while keeping both fluorescence properties and crystal structure intact.

In a recent study, which is published in Nanotechnology, researchers in France and Germany have explored with success this alternative route to producing homogeneous samples of pure and very small fluorescent diamond nanoparticles with high yield. The fabrication procedure starts with the irradiation of finely controlled micron-size diamonds and requires subsequent milling and purification steps. In this novel process, substitutional nitrogen-containing microdiamonds with defined atomic composition were irradiated using a high-energy electron beam and then annealed at high temperature (800 °C) to create the desired photoluminescent centres in an intact diamond lattice. An original two-step milling protocol was designed to convert the fluorescent microdiamond into very small (down to 4 nm) round-shape nanoparticles of highly pure sp3 diamond with very bright and stable photoluminescent centres.

Such a fine fabrication process can now be used for the large-scale production of fluorescent diamond nanoparticles. One can vary and tailor their properties via the composition of the starting material to answer the needs of future applications. These fluorescent diamond nanoparticles open realistic perspectives to very long term labeling, to quantitative biology and innovative nanotechnology applications in composites, optoelectronics or analytical chemistry.

Reference : « High yield fabrication of fluorescent nanodiamonds », Jean-Paul Boudou, Patrick A. Curmi, Fedor Jelezko, Joerg Wrachtrup, Pascal Aubert, Mohamed Sennour, Gopalakrischnan Balasubramanian, Rolf Reuter, Alain Thorel and Eric Gaffet, 2009, Nanotechnology 20 235602

Patrick Curmi | EurekAlert!
Further information:
http://www.univ-evry.fr
http://www.iop.org/EJ/abstract/0957-4484/20/23/235602/
http://www.inserm.fr

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>