Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough toward industrial production of fluorescent nanodiamonds

09.06.2009
The laboratory « Structure - Activité of Normal & Pathologic Biomolecules– SANPB », Inserm / UEVE U829 (Genopole Evry, France) in collaboration with the Material Centre of Mines-ParisTech (Evry, France), the NRG - UMR 5060 CNRS / UTBM (Technology University of Belfort-Montbéliard) and the Physic Institute of Stuttgart University (Germany) discovered a novel route to fabricate fluorescent nanoparticles from diamond microcrystals. Results are published in Nanotechnology June10 2009 issue.

Fluorescence is a major tool in life and material sciences. In biology/medicine, the coupling of fluorescent dyes, to proteins or nucleic acids (RNA, DNA) allows one to investigate their fate and interactions in cultured cells or in the body. Similarly, fluorescence is used in material sciences to detect electromagnetic fields, for optic storage or tracking (notably to detect fake products). However, most of fluorescent dyes are made of molecules with a limited life time due to chemical reactivity.

In this context fluorescent diamond nanoparticles present a valuable alternative thanks to their outstanding photophysical properties. They are very bright and possess long-term non-bleaching, non-blinking fluorescence in the red/NIR region. Based on these unique properties, multiple applications are foreseen in physics, material science, biochemistry and biology. However, until recently, the production of such nanoparticles was limited to the laboratory.

A single route is nowadays taken to fabricate such fluorescent nanoparticles. It consists of irradiating substitutional nitrogen-containing diamond nanocrystals, produced by the diamond industry, with electron or ion beams to create vacancies in the crystal lattice. Isolated substitutional nitrogen atoms then trap a moving vacancy during annealing to form a fluorescent NV centre. Unfortunately, the efficiency and yield of this route are low due to amorphization and the loss of moving vacancies to the surface during irradiation and annealing.

A top-down processing of diamond microcrystals, which are less prone to amorphization and vacancy loss, would provide a more industrially scalable route. However, in this case two barriers have to be surmounted – the difficulties of irradiating large amounts of material and converting microdiamonds into nanocrystals while keeping both fluorescence properties and crystal structure intact.

In a recent study, which is published in Nanotechnology, researchers in France and Germany have explored with success this alternative route to producing homogeneous samples of pure and very small fluorescent diamond nanoparticles with high yield. The fabrication procedure starts with the irradiation of finely controlled micron-size diamonds and requires subsequent milling and purification steps. In this novel process, substitutional nitrogen-containing microdiamonds with defined atomic composition were irradiated using a high-energy electron beam and then annealed at high temperature (800 °C) to create the desired photoluminescent centres in an intact diamond lattice. An original two-step milling protocol was designed to convert the fluorescent microdiamond into very small (down to 4 nm) round-shape nanoparticles of highly pure sp3 diamond with very bright and stable photoluminescent centres.

Such a fine fabrication process can now be used for the large-scale production of fluorescent diamond nanoparticles. One can vary and tailor their properties via the composition of the starting material to answer the needs of future applications. These fluorescent diamond nanoparticles open realistic perspectives to very long term labeling, to quantitative biology and innovative nanotechnology applications in composites, optoelectronics or analytical chemistry.

Reference : « High yield fabrication of fluorescent nanodiamonds », Jean-Paul Boudou, Patrick A. Curmi, Fedor Jelezko, Joerg Wrachtrup, Pascal Aubert, Mohamed Sennour, Gopalakrischnan Balasubramanian, Rolf Reuter, Alain Thorel and Eric Gaffet, 2009, Nanotechnology 20 235602

Patrick Curmi | EurekAlert!
Further information:
http://www.univ-evry.fr
http://www.iop.org/EJ/abstract/0957-4484/20/23/235602/
http://www.inserm.fr

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>