Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough toward industrial production of fluorescent nanodiamonds

09.06.2009
The laboratory « Structure - Activité of Normal & Pathologic Biomolecules– SANPB », Inserm / UEVE U829 (Genopole Evry, France) in collaboration with the Material Centre of Mines-ParisTech (Evry, France), the NRG - UMR 5060 CNRS / UTBM (Technology University of Belfort-Montbéliard) and the Physic Institute of Stuttgart University (Germany) discovered a novel route to fabricate fluorescent nanoparticles from diamond microcrystals. Results are published in Nanotechnology June10 2009 issue.

Fluorescence is a major tool in life and material sciences. In biology/medicine, the coupling of fluorescent dyes, to proteins or nucleic acids (RNA, DNA) allows one to investigate their fate and interactions in cultured cells or in the body. Similarly, fluorescence is used in material sciences to detect electromagnetic fields, for optic storage or tracking (notably to detect fake products). However, most of fluorescent dyes are made of molecules with a limited life time due to chemical reactivity.

In this context fluorescent diamond nanoparticles present a valuable alternative thanks to their outstanding photophysical properties. They are very bright and possess long-term non-bleaching, non-blinking fluorescence in the red/NIR region. Based on these unique properties, multiple applications are foreseen in physics, material science, biochemistry and biology. However, until recently, the production of such nanoparticles was limited to the laboratory.

A single route is nowadays taken to fabricate such fluorescent nanoparticles. It consists of irradiating substitutional nitrogen-containing diamond nanocrystals, produced by the diamond industry, with electron or ion beams to create vacancies in the crystal lattice. Isolated substitutional nitrogen atoms then trap a moving vacancy during annealing to form a fluorescent NV centre. Unfortunately, the efficiency and yield of this route are low due to amorphization and the loss of moving vacancies to the surface during irradiation and annealing.

A top-down processing of diamond microcrystals, which are less prone to amorphization and vacancy loss, would provide a more industrially scalable route. However, in this case two barriers have to be surmounted – the difficulties of irradiating large amounts of material and converting microdiamonds into nanocrystals while keeping both fluorescence properties and crystal structure intact.

In a recent study, which is published in Nanotechnology, researchers in France and Germany have explored with success this alternative route to producing homogeneous samples of pure and very small fluorescent diamond nanoparticles with high yield. The fabrication procedure starts with the irradiation of finely controlled micron-size diamonds and requires subsequent milling and purification steps. In this novel process, substitutional nitrogen-containing microdiamonds with defined atomic composition were irradiated using a high-energy electron beam and then annealed at high temperature (800 °C) to create the desired photoluminescent centres in an intact diamond lattice. An original two-step milling protocol was designed to convert the fluorescent microdiamond into very small (down to 4 nm) round-shape nanoparticles of highly pure sp3 diamond with very bright and stable photoluminescent centres.

Such a fine fabrication process can now be used for the large-scale production of fluorescent diamond nanoparticles. One can vary and tailor their properties via the composition of the starting material to answer the needs of future applications. These fluorescent diamond nanoparticles open realistic perspectives to very long term labeling, to quantitative biology and innovative nanotechnology applications in composites, optoelectronics or analytical chemistry.

Reference : « High yield fabrication of fluorescent nanodiamonds », Jean-Paul Boudou, Patrick A. Curmi, Fedor Jelezko, Joerg Wrachtrup, Pascal Aubert, Mohamed Sennour, Gopalakrischnan Balasubramanian, Rolf Reuter, Alain Thorel and Eric Gaffet, 2009, Nanotechnology 20 235602

Patrick Curmi | EurekAlert!
Further information:
http://www.univ-evry.fr
http://www.iop.org/EJ/abstract/0957-4484/20/23/235602/
http://www.inserm.fr

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>